GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 2.5-3.1 GHz

Typical Applications

The HMC647ALP6E is ideal for:

- EW Receivers
- Weather \& Military Radar
- Satellite Communications
- Beamforming Modules
- Phase Cancellation

Functional Diagram

Features

Low RMS Phase Error: 1.5°
Low Insertion Loss: 4 dB
High Linearity: +50 dBm
Positive Control Logic
360° Coverage, LSB $=5.625^{\circ}$
28 Lead QFN Leadless SMT Package: 36mm²

General Description

The HMC647ALP6E is a 6-bit digital phase shifter which is rated from 2.5 to 3.1 GHz , providing 360 degrees of phase coverage, with a LSB of 5.625 degrees. The HMC647ALP6E features very low RMS phase error of 1.5 degrees and extremely low insertion loss variation of $\pm 0.4 \mathrm{~dB}$ across all phase states. This high accuracy phase shifter is controlled with positive control logic of $0 /+5 \mathrm{~V}$ The HMC647ALP6E is housed in a compact $6 \times 6 \mathrm{~mm}$ plastic leadless SMT package and is internally matched to 50 Ohms with no external components.

Electrical Specifications
$T_{A}=+25^{\circ} \mathrm{C}$, Vss $=-5 \mathrm{~V}$, Vdd $=+5 \mathrm{~V}$, control Voltage $=0 /+5 \mathrm{~V}$, 50 Ohm System

Parameter	Min.	Typ.	Max.	Units
Frequency Range	2.5		3.1	GHz
Insertion Loss*		4	6.5	dB
Input Return Loss*		16		dB
Output Return Loss*		16		dB
Phase Error*		± 5	+6/-15	deg
RMS Phase Error		1.5		deg
Amplitude Settling Time ($50 \% \mathrm{cntl}$ to $+/-0.1 \mathrm{~dB}$ margin of final RFout)		150		nS
Phase Settling Time (50\% cntl to +/-1 degree margin of final RFout)		125		nS
Insertion Loss Variation*		± 0.4		dB
Input Power for 1 dB Compression		31		dBm
Input Third Order Intercept		50		dBm
Control Voltage Current		35	250	$\mu \mathrm{A}$
Bias Control Current		5	15	mA

*Note: Major States Shown

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 2.5-3.1 GHz

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 2.5-3.1 GHz

Relative Phase Shift, RMS, Average, Max, All States

Input IP2, Major States Only

RMS Phase Error vs. Temperature

Input IP3, Major States Only

Input P1dB, Major States Only

Insertion Loss vs. Temperature, Major States Only

Phase Error vs. State

Bias Voltage \& Current

Vdd	Idd
5.0	5.3 mA
Vss	Iss
-5.0	5.3 mA

Control Voltage

State	Bias Condition
Low (0)	0 to 0.2 Vdc
High (1)	$\mathrm{Vdd} \pm 0.2 \mathrm{Vdc} @ 35 \mu \mathrm{~A}$ Typ.

Absolute Maximum Ratings

Input Power (RFIN)	$33 \mathrm{dBm}\left(\mathrm{T}=+85^{\circ} \mathrm{C}\right)$
Bias Voltage Range (Vdd)	-0.2 to +12 V
Bias Voltage Range (Vss)	+0.2 to -12 V
Channel Temperature (Tc)	$150^{\circ} \mathrm{C}$
Thermal Resistance (channel to ground paddle)	$128^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1 A Passed 250 V

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Truth Table

Control Voltage Input						Phase Shift (Degrees) RFIN - RFOUT
Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	
0	0	0	0	0	0	Reference*
1	0	0	0	0	0	5.625
0	1	0	0	0	0	11.25
0	0	1	0	0	0	22.5
0	0	0	1	0	0	45.0
0	0	0	0	1	0	90.0
0	0	0	0	0	1	180.0
1	1	1	1	1	1	354.375
Any combination of the above states will provide a phase shift approximately equal to the sum of the bits selected. *Reference corresponds to monotonic setting						

Outline Drawing

FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-VJJC-3.
28-Lead Lead Frame Chip Scale Package [LFCSP]
$6 \mathrm{~mm} \times 6 \mathrm{~mm}$ Body and 0.85 mm Package Height
(CP-28-13)
Dimensions shown in millimeters

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[2]}$
HMC647ALP6E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 $^{[1]}$	$\frac{\mathrm{H} 647 \mathrm{~A}}{\mathrm{XXXX}}$

[1] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[2] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Voltage Supply	
2, 20	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	$\underline{\underline{Q G N D}}$
3	RFIN	This port is DC coupled and matched to 50 Ohms.	RFIN
4-18, 21	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
19	RFOUT	This port is DC coupled and matched to 50 Ohms.	- RFOUT
$\begin{aligned} & 22-24 \\ & 26-28 \end{aligned}$	BIT6, BIT5, BIT4, BIT3, BIT2, BIT1	Control Input. See truth table and control voltage tables.	
25	Vss	Voltage Supply	

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com

Evaluation PCB

List of Materials for Evaluation EV1HMC647ALP6 ${ }^{[1][3]}$

Item	Description
J1－J2	PCB Mount SMA RF Connector
J3	Header 2mm，16 pins
C1，C2	1000pF，0402 pkg
U1	HMC647ALP6E 6－Bit Digital Phase Shifter
PCB［2］	117718 Evaluation PCB

［1］Reference this number when ordering complete evaluation PCB
［2］Circuit Board Material：Rogers 4350
［3］Please refer to part＇s pin description and functional diagram for pin out assignments on evaluation board．

The circuit board used in the final application should use RF circuit design techniques．Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown．A sufficient number of via holes should be used to connect the top and bottom ground planes．The evaluation board should be mounted to an appropriate heat sink．The evaluation circuit board shown is available from Analog Devices，Inc． upon request．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

