Typical Applications

The HMC849ALP4CE is ideal for:

- Cellular/4G Infrastructure
- WiMAX, WiBro \& Fixed Wireless
- Automotive Telematics
- Mobile Radio
- Test Equipment

Functional Diagram

Features

High Isolation: up to 60 dB
Single Positive Control: $0 /+3 \mathrm{~V}$ to +5 V
High Input IP3: +52 dBm
Non-Reflective Design
"All Off" State
16 Lead $4 \times 4 \mathrm{~mm}$ QFN Package: $16 \mathrm{~mm}^{2}$

General Description

The HMC849ALP4CE is a high isolation non-reflective DC to 6 GHz GaAs pHEMT SPDT switch in a low cost leadless surface mount package. The switch is ideal for cellular/WiMAX/4G Infrastructure applications yielding up to 60 dB isolation, low 0.8 dB insertion loss and +52 dBm input IP3. Power handling is excellent up through the 5-6 GHz WiMAX band with the switch offering a P1dB compression point of +31 dBm . On-chip circuitry allows a single positive voltage control of $0 /+3 \mathrm{~V}$ or $0 /+5 \mathrm{~V}$ at very low DC currents. An enable input (EN) set to logic high will put the switch in an "all off" state.

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vctl}=0 / \mathrm{Vdd}, \mathrm{Vdd}=+3 \mathrm{~V}$ to +5 V , 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	$\begin{aligned} & \mathrm{DC}-2.0 \mathrm{GHz} \\ & 2.0-4.0 \mathrm{GHz} \\ & 4.0-6.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.9 \\ & 1.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation (RFC to RF1/RF2)	$\begin{aligned} & \mathrm{DC}-2.0 \mathrm{GHz} \\ & 2.0-4.0 \mathrm{GHz} \\ & 4.0-6.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 53 \\ & 48 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 56 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss (On State)	$\begin{aligned} & \mathrm{DC}-4.0 \mathrm{GHz} \\ & 4.0-6.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 17 \\ & 14 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss (Off State)	DC - 6.0 GHz		15		dB
$\begin{array}{ll}\text { Input Power for } 1 \mathrm{~dB} \text { Compression } & +3 \mathrm{~V} \\ & +5 \mathrm{~V}\end{array}$	$0.35-6.0 \mathrm{GHz}$	$\begin{aligned} & 24 \\ & 30 \end{aligned}$	$\begin{aligned} & 27 \\ & 33 \end{aligned}$		dBm dBm
Input Third Order Intercept (Two-Tone Input Power $=+10 \mathrm{dBm}$ Each Tone)	DC - 6.0 GHz		52		dBm
Switching Speed tRISE, tFALL (10/90\% RF) tON, tOFF (50% CTL to $10 / 90 \%$ RF)	DC - 6.0 GHz		$\begin{gathered} 60 \\ 150 \end{gathered}$	600	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz

Insertion Loss

Isolation Between

Ports RFC and RF1 / RF2

0.1 and 1 dB Input Compression

Point, Vdd = 5V, Linear

Return Loss ${ }^{[1]}$

Isolation Between Ports RF1 and RF2

0.1 and 1 dB Input Compression

Point, Vdd = 3V, Linear

0.1 and 1 dB Input Compression

Point, Vdd = 5V

Input Third Order Intercept
Point, Vdd = 5V, Linear

Input Third Order Intercept Point, Vdd = 5V

0.1 and 1 dB Input Compression

Point, Vdd = 3V

Input Third Order Intercept

Point, Vdd = 3V, Linear

Input Third Order Intercept
Point, Vdd = 3V

HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz

Absolute Maximum Ratings

Bias Voltage (Vdd)	7V
Control Voltage (Vctl, EN)	-1V to Vdd +1V
RF Input Power * Through Path $3 \mathrm{~V} / 5 \mathrm{~V}$ Termination Path $3 \mathrm{~V} / 5 \mathrm{~V}$	$\begin{aligned} & 31 / 33 \mathrm{dBm} \\ & 26.5 \mathrm{dBm} \end{aligned}$
Channel Temperature	$150{ }^{\circ} \mathrm{C}$
Continuous Pdiss ($\mathrm{T}=85^{\circ} \mathrm{C}$) (derate $14.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for through path, and $6.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for termination path above $85^{\circ} \mathrm{C}$) Through Path Termination Path	$\begin{aligned} & 0.969 \mathrm{~W} \\ & 0.451 \mathrm{~W} \end{aligned}$
Thermal Resistance (channel to package bottom) Through Path Termination Path	$\begin{aligned} & 67.1^{\circ} \mathrm{C} / \mathrm{W} \\ & 144.2^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Storage Temperature	-65 to $+150{ }^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1A

*The RF input power is quite lower than the breakdown power levels. Hence, the only concern with this product is the thermal limit.

Bias Voltage \& Current

Vdd (V)	Idd (Typ.) (mA)
3	1.2
5	1.3

Digital Control Voltages

State	Bias Condition
Low	0 to $+0.8 \mathrm{Vdc} @<1 \mu \mathrm{~A}$ Typical
High	+2.0 to $+5.0 \mathrm{Vdc} @ 40 \mu \mathrm{~A}$ Typical

Truth Table

Control Input		Signal Path State	
Vctl	EN	RFC - RF1	RFC - RF2
Low	Low	OFF	ON
High	Low	ON	OFF
Low	High	OFF	OFF
High	High	OFF	OFF

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz

Outline Drawing

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY
2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
4. PAD BURR LENGTH SHALL BE 0.15 mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05 mm MAXIMUM.
5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm .
6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND
7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[1]}$
HMC849ALP4CE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 $^{[2]}$	$\frac{\text { H849A }}{\text { XXXX }}$

[^0]v01.0818

HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Supply Voltage.	
2	Vctl	Control input. See truth and control voltage tables.	
3, 9, 12	RFC, RF1, RF2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
$\begin{gathered} 4,6,7,8 \\ 13,14,15,16 \end{gathered}$	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
5	EN	Enable. See truth and control voltage tables.	
10, 11	GND	Package bottom must also be connected to PCB RF ground.	$\underline{I}_{=}^{G N D}$

Application Circuit

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC849ALP4C ${ }^{[1]}$

Item	Description
J1- J3	PC Mount SMA RF Connector
J4- J8	DC Pin
C1 - C4	100 pF Capacitor, 0402 Pkg.
U1	HMC849ALP4CE SPDT Switch
PCB [2]	106965 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Analog Devices, upon request.

HIGH ISOLATION SPDT
 NON-REFLECTIVE SWITCH, DC - 6 GHz

Notes:

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB SKY13373-460LF-EVB

[^0]: [1] 4-Digit lot number XXXX
 [2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$

