Data Sheet

FEATURES

Integrated baluns for single-ended receiver (Rx) inputs and
local oscillator (LO) input
Rx channel gain: $\mathbf{2 2 d B}$
Noise figure (NF): 10 dB
P1dB: - 10 dBm
LO input range: $\mathbf{- 8 ~ d B m}$ to +5 dBm
Rx to IF isolation: $\mathbf{3 0} \mathbf{d B}$
RF signal bandwidth: $\mathbf{2 5 0} \mathbf{~ M H z}$
Rx output impedance: 900Ω differential
LO input buffer: $24 \mathbf{~ G H z}$
RF and LO S11 at 50Ω : -5 dB
Temperature sensor with analog output: $\pm 5^{\circ}$
Electrostatic discharge (ESD) performance
Human body model (HBM): 2000 V
Charged device model (CDM): 500 V
Qualified for automotive applications

APPLICATIONS

Automotive radars

Industrial radars

Microwave ($\mu \mathrm{W}$) radar sensors

GENERAL DESCRIPTION

The ADF5904 is a 4-channel, 24 GHz , receiver downconverter. Each channel contains a single-ended RF input with an on-chip balun followed by a differential low noise amplifier (LNA) and a downconverter mixer with differential output buffers. The RF LO path also has an on-chip balun.

Control of the on-chip registers is through a simple 3-wire interface.

The ADF5904 comes in a compact 32 -lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP package.

FUNCTIONAL BLOCK DIAGRAM

Rev. A

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Timing Characteristics 4
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
Theory of Operation 9
RF Path 9
LO Path 9

REVISION HISTORY

2/16-Rev. 0 to Rev. A

Changes to Features Section... 1
Change to Parameter HBM, Table 3 .. 5
Change to Temperature Sensor Section..................................... 13
Changes to Ordering Guide ... 15

3/15—Revision 0: Initial Version
Input Shift Register 9
Program Modes 9
Register Map 10
Register 0 11
Register 1 12
Register 2 12
Initialization Sequence 13
Temperature Sensor 13
Application Information 14
Application of the ADF5904 in FMCW Radar 14
Outline Dimensions 15
Ordering Guide 15
Automotive Products 15

SPECIFICATIONS

$A V_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}, \mathrm{dBm}$ referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$ to $\mathrm{T}_{\mathrm{MIN}}$, unless otherwise noted. Operating temperature range is $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
OPERATING CONDITIONS LO and RF Frequency Range		24		24.25	GHz	
LO INPUT Input Return Loss (S11) LO Input Level		-8	$\begin{aligned} & -5 \\ & -5 \end{aligned}$	+5	dB dBm	
BASEBAND OUTPUTS Voltage Conversion Gain Demodulation Bandwidth Output DC Offset (Differential) Output Common Mode Output Swing Channel to Channel Phase Mismatch over Temperature			$\begin{aligned} & 22 \\ & 10 \\ & \pm 20 \\ & \mathrm{AV}_{\mathrm{DD}}-1.0 \\ & 2 \\ & \pm 5 \end{aligned}$		dB MHz mV V \checkmark peak Degrees	Measured differentially Maximum capacitance $=10 \mathrm{pF}$ Differential 900Ω load
DYNAMIC PERFORMANCE, RF $=24.125 \mathrm{GHz}$ Conversion Gain Input P1dB RF Input Return Loss Second-Order Input Intercept Third-Order Input Intercept LO to RF Isolation RF to IF Isolation Noise Figure Noise Figure Under Blocking Conditions	$\begin{aligned} & \text { IIP2 } \\ & \text { IIP3 } \end{aligned}$		$\begin{aligned} & 22 \\ & -10 \\ & -5 \\ & 20 \\ & 0 \\ & 30 \\ & 30 \\ & 10 \\ & 15 \end{aligned}$		dB dBm dB dBm dBm dB dB dB dB	Terminated in 50Ω Double sideband (DSB) at 100 kHz With a -30 dBm input interferer at 5 MHz offset from carrier (DSB)
LOGIC INPUTS Input Voltage High Low Input Current Input Capacitance	V_{H} VII $\mathrm{I}_{\mathrm{INH}}, \mathrm{I}_{\mathrm{INL}}$ $\mathrm{Cl}_{\mathrm{IN}}$	1.4		$\begin{aligned} & 0.6 \\ & \pm 1 \\ & 10 \end{aligned}$	V V $\mu \mathrm{A}$ pF	
LOGIC OUTPUTS Output Voltage High Low Output Current High Low	Voн VoL Іон los	$V_{D D}-0.4$		0.4 500 500	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$	VDD selected from the DOUT VSEL bit (Bit DB8, Register 0)
TEMPERATURE SENSOR Analog Accuracy Sensitivity			$\begin{aligned} & \pm 5 \\ & 4.243 \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{aligned}$	Following one-point calibration
POWER SUPPLIES $A V_{D D}$ Power-Down Current			$\begin{aligned} & 170 \\ & 100 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$	

TIMING CHARACTERISTICS

$A V_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}, \mathrm{dBm}$ referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$ to $\mathrm{T}_{\mathrm{MIN}}$, unless otherwise noted. Operating temperature range is $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Table 2.

Parameter	Limit at $\mathbf{T}_{\text {MIN }}$ to T $_{\text {MAX }}$	Unit	Description
t_{1}	20	ns min	LE setup time
t_{2}	10	ns min	DATA to CLK setup time
t_{3}	10	ns min	DATA to CLK hold time
t_{4}	25	ns min	CLK high duration
t_{5}	25	ns min	CLK low duration
t_{6}	10	ns min	CLK to LE setup time
t_{7}	20	$\mathrm{~ns} \min$	LE pulse width
t_{8}	10	ns max	LE setup time to DOUT
t_{9}	15	$\mathrm{~ns} \max$	CLK setup time to DOUT

Timing Diagrams

Figure 3. Load Circuit for DOUT Timing, $C_{L}=10 \mathrm{pF}$

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
AV $\mathrm{V}_{\text {d }}$ to GND	-0.3 V to +3.9 V
Digital Input/Output Voltage to GND	-0.3 V to $\mathrm{AV} \mathrm{VD}+0.3 \mathrm{~V}$
Analog Input/Output Voltage to GND	-0.3 V to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
RXx_RF, LO_IN to GND	-0.3 V to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
θ_{JA} Thermal Impedance ${ }^{1}$ (Pad Soldered)	$40.83^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering	
Peak Temperature	$260^{\circ} \mathrm{C}$
Time at Peak Temperature	40 sec
Transistor Count	
CMOS	65,100
Bipolar	2280
ESD	
CDM	500 V
HBM	2000 V

[^0]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
$\begin{aligned} & 1,3,5,7,18,20, \\ & 22,24,28,30 \end{aligned}$	GND	Ground Pins.
2	RX1_RF	Channel 1 RF Input.
4, 21, 27	$A V_{\text {DD }}$	Analog Power Supply. The supply range is $3.3 \mathrm{~V} \pm 5 \%$. Place decoupling capacitors ($0.1 \mu \mathrm{~F}, 1 \mathrm{nF}$, and 10 pF) to the ground plane as close as possible to this pin.
6	RX2_RF	Channel 2 RF Input.
8	RX2_0	Channel 2 Baseband Output.
9	RX2_OB	Channel 2 Complementary Baseband Output.
10	LE	Load Enable, CMOS Input. When LE goes high, data stored in the shift registers is loaded into one of the four latches; the control bits select the latch.
11	CLK	Serial Clock Input. This serial clock clocks in the serial data to the registers. Data latches into the 32-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.
12	DATA	Serial Data Input. The serial data loads MSB first and the two LSBs are the control bits. This input is a high impedance CMOS input.
13	CE	Chip Enable. A logic low on this pin powers down the device.
14	DOUT	Serial Data Output.
15	ATEST	Analog Test Output
16	RX4_OB	Channel 4 Complementary Baseband Output.
17	RX4_O	Channel 4 Baseband Output.
19	RX4_RF	Channel 4 RF Input.
23	RX3_RF	Channel 3 RF Input.
25	RX3_0	Channel 3 Baseband Output.
26	RX3_OB	Channel 3 Complementary Baseband Output.
29	LO_IN	Local Oscillator Input.
31	RX1_OB	Channel 1 Complementary Baseband Output.
32	RX1_0	Channel 1 Baseband Output.
	EPAD	Exposed Pad. The LFCSP has an exposed pad that must connect to GND.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. IF Output Power vs. RF Input Power,
LO Frequency $=24 \mathrm{GHz}$ at -5 dBm and IF Frequency $=100 \mathrm{kHz}$

Figure 6. Conversion Gain vs. RF Input Power,
LO Frequency $=24 \mathrm{GHz}$ at -5 dBm, and IF Frequency $=100 \mathrm{kHz}$

Figure 7. IF Output Power vs. RF Input Power,
LO Frequency $=24 \mathrm{GHz}$ at -5 dBm , and IF Frequency $=100 \mathrm{kHz}$

Figure 8. Channel Gain vs. RF Frequency,
Rx Input $=-50 \mathrm{dBm}$, LO Power $=-5 \mathrm{dBm}$, and IF Frequency $=100 \mathrm{kHz}$

Figure 9. Channel Gain vs. LO Input Power, Rx Input $=-50 \mathrm{dBm}$, LO Frequency $=24 \mathrm{GHz}$, and IF Frequency $=100 \mathrm{kHz}$

Figure 10. Noise Figure vs. IF Frequency, LO Frequency $=24.125 \mathrm{GHz}$ at -5 dBm

Figure 11. P1dB vs. IF Frequency, LO Frequency $=24 \mathrm{GHz}$ at -5 dBm

Figure 12. Output Power vs. Input Power, IIP3 LO Frequency $=24.125 \mathrm{GHz}$ at -5 dBm, Rx Frequency $=L O+100 \mathrm{kHz}$ and LO +200 kHz

Figure 13. Gain vs. IF Frequency, $R x$ Power $=-50 \mathrm{dBm}$ and LO Frequency $=24 \mathrm{GHz}$ at -5 dBm

Figure 14. Temperature Sensor Voltage on ATEST

THEORY OF OPERATION

RF PATH

The ADF5904 contains four identical 24 GHz downconverter channels. Each channel contains a balun that converts the single-ended input into a differential signal for the rest of the downconverter path (see Figure 15). This balun is followed by a LNA that feeds the downconverter mixer.

LO PATH

The four downconverter channels share the same LO path. The LO path contains a balun that converts the single-ended input to a differential signal to drive the mixer (see Figure 16).

Figure 16. LO Input Stage

INPUT SHIFT REGISTER

The ADF5904 digital section includes power-down bits and test modes to read back registers. Data is clocked into the 32 -bit input shift register on each rising edge of CLK. The data is clocked in MSB first. Data is transferred from the input shift register to one of four latches on the rising edge of LE. The destination latch is determined by the state of the two control bits (C2 and C1) in the input shift register. These are the two LSBs (DB1 and DB0, respectively), as shown in Table 5. The truth table for these bits is shown in Table 5. Figure 18 to Figure 20 show a summary of how the latches are programmed.

PROGRAM MODES

Table 5 and Figure 18 through Figure 20 show how to set up the program modes in the ADF5904.

Table 5. C2 and C1 Truth Table

Control Bits		
C2 (DB1)	C1 (DB0)	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

REGISTER MAP

REGISTER 0 (RO)

RESERVED																		$\begin{aligned} & \text { 꼬 } \\ & \text { O} \\ & \text { an } \end{aligned}$	$\begin{aligned} & \text { Nָ } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 동 } \\ & \text { 름 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & \text { य } \\ & 0 \\ & 2 \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	RESERVED						$\begin{gathered} \text { CONTROL } \\ \text { BITS } \end{gathered}$	
DB31	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PC4	PC3	PC2	PC1	PLO	LPB	DIO	1	0	1	0	0	0	C2(0)	C1(0)

REGISTER 1 (R1)

CHANNEL SELECT			RESERVED																											CONTROL BITS	
DB31	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
cs2	cs1	cso	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	1	1	0	C2(0)	C1(1)

REGISTER 2 (R2)																															
RESERVED																	CHANNEL $\stackrel{\text { 5-BIT }}{\text { TEST SELECT }}$					RESERVED								CONTROL BITS	
DB31	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	TC4	TC3	TC2	TC1	TC0	0	0	0	0	0	0	0	1	C2(1)	C1(0)

REGISTER 3 (R3)

Figure 17. Latch Summary

Figure 18. Register 0

REGISTER 0

Register 0 Control Bits

With Bits[C2:C1] set to 00, Register R0 is programmed. Figure 18 shows the input data format for programming this register.

DOUT VSEL

DB8 controls the DOUT logic levels. Set this bit to 0 to set the DOUT logic level to 3.3 V , and set this bit to 1 to sets the DOUT logic level to 1.8 V .

LO_IN Pin Bias

DB9 controls the dc bias voltage on the LO_IN pin (Pin 29). Set this bit to 0 to set no dc bias on the LO_IN pin, and set this bit to 1 to set the dc bias to 1.5 V . AC couple the LO signal to the LO_IN pin.

PUP LO

DB10 provides the power-up bit for the LO block. Set this bit to 0 to power down the LO block, and set this bit to 1 to return the LO block to normal operation.

PUP CH1

DB11 provides the power-up bit for RF Receiver Channel 1. Setting this bit to 0 performs a power-down of Channel 1 blocks. Setting this bit to 1 returns Channel 1 blocks to normal operation.

PUP CH2

DB12 provides the power-up bit for RF Receiver Channel 2. Set this bit to 0 to power down the Channel 2 blocks, and set this bit to 1 to return the Channel 2 blocks to normal operation.

PUP CH3

DB13 provides the power-up bit for RF Receiver Channel 3. Set this bit to 0 to power down the Channel 3 blocks, and set this bit to 1 to return the Channel 3 blocks to normal operation.

PUP CH4

DB14 provides the power-up bit for RF Receiver Channel 4. Set this bit to 0 to power down the Channel 4 blocks, and set this bit to 1 to return the Channel 4 blocks to normal operation.

Figure 19. Register 1

TC4	TC3	TC2	TC1	TC0	CHANNEL TEST SELECT
0	0	0	0	0	NONE SELECTED
0	0	0	0	1	TEMPERATURE SENSOR TO ATEST
0	0	0	1	0	RESERVED
0	-	-	-	-	RESERVED
0	1	1	1	1	RESERVED
1	0	0	0	0	REGISTER 0 READBACK
1	0	0	0	1	REGISTER 1 CHANNEL 1 READBACK
1	0	0	1	0	REGISTER 1 CHANNEL 2 READBACK
1	0	0	1	1	REGISTER 1 CHANNEL 3 READBACK
1	0	1	0	0	REGISTER 1 CHANNEL 4 READBACK
1	0	1	0	1	REGISTER 1 LO READBACK
1	0	1	1	0	REGISTER 2 READBACK
1	0	1	1	1	RESERVED
1	1	x	x	x	RESERVED

Figure 20. Register 2

REGISTER 1

Register 1 Control Bits

With Bits[C2:C1] set to 01, Register R1 is programmed. Register 1 contains the internal controls for the four RF channels and the LO path. During the initialization sequence, the default conditions are loaded. See Step 3 to Step 7 in Table 6.

REGISTER 2

Register 2 Control Bits
With Bits[C2:C1] set to 10, Register R2 is programmed. Figure 20 shows the input data format for programming this register.

5-Bit Channel Test Select

Bits[DB14:DB10] control the ADF5904 test modes. These bits allow access to the temperature sensor on the ATEST pin and the register readback on the DOUT pin. See Figure 20 for the truth table.

INITIALIZATION SEQUENCE

After powering up the device, administer the initialization sequence in Table 6 to set the register with the code to configure the device.

Table 6. Initialization Sequence

Step	Register	Hex Code	Description
1	R3	0×00000003	Reserved
2	R2	0×00020406	Temperature sensor to ATEST
3	R1	0×20001499	Configure Channel 1
4	R1	0×40001499	Configure Channel 2
5	R1	0×60001499	Configure Channel 3
6	R1	0×80001499	Configure Channel 4
7	R1	0xA0000019	Configure LO
8	R0	0x80007CA0	Power up

TEMPERATURE SENSOR

The on-chip temperature sensor of the ADF5904 is accessed on the ATEST pin. The temperature sensor operates over the full operating temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. To improve accuracy, conduct a one-point calibration at room temperature and store the result in the external memory. Convert the ATEST voltage to temperature by using the following equation:

$$
\text { Temperature }\left({ }^{\circ} \mathrm{C}\right)=\left(V_{\text {ATEST }}-V_{\text {OFF }}\right) / V_{\text {GAIN }}
$$

where:
$V_{\text {ATEST }}$ is the voltage on the ATEST pin.
$V_{\text {off }}$ is the offset voltage and it is 1.212 V .
$V_{\text {GAIN }}$ is the voltage gain and it is $4.072 \mathrm{e}^{-3}$.

APPLICATION INFORMATION
 APPLICATION OF THE ADF5904 IN FMCW RADAR

Figure 21 shows the application of the ADF5904 in a frequency modulated continuous wave (FMCW) radar system.
In the FMCW radar system, the ADF4159 generates the sawtooth or triangle ramps necessary for this type of radar to operate.
The ADF4159 controls the VTUNE pin on the transceiver (Tx) monolithic microwave integrated circuit (MMIC) and thus the frequency of the voltage controlled oscillator (VCO) and the Tx output signal on TXOUT1 or TXOUT2. The LO signal from the Tx MMIC is fed to the LO input on the ADF5904.

The ADF5904 downconverts the signal from the four receiver antennas to baseband with the LO signal from the Tx MMIC.
The downconverted baseband signals from the four receiver channels on the ADF5904 are fed to the ADAR7251 4-channel, continuous time (CT), sigma-delta ($\Sigma-\Delta$) analog-to-digital converter (ADC).

A digital signal processor (DSP) follows the ADC to handle the target information processing.

Figure 21. FMCW Radar with ADF5904

OUTLINE DIMENSIONS

WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION

Figure 22. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body, Very Very Thin Quad
(CP-32-12)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1,2	Temperature Range	Package Description	Package Option
ADF5904WCCPZ	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12
ADF5904WCCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12
ADF5904ACPZ	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12
ADF5904ACPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12
EV-ADF5904SD2Z		Evaluation Board	

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADF5904W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

[^0]: ${ }^{1}$ Two signal planes (that is, on the top and the bottom surfaces of the board), two buried planes, and nine vias.

