Data Sheet

FEATURES

Differential input to single-ended output conversion
Broad input frequency range: $\mathbf{7 0 0} \mathbf{~ M H z}$ to $\mathbf{4 2 0 0} \mathbf{~ M H z}$
Maximum gain: $\mathbf{1 2 . 0 ~ d B}$ typical
Gain range of $\mathbf{2 0 ~ d B}$ typical
Gain step size: 0.5 dB typical
Glitch free, thermometer-based digital step attenuator Fast attack, gain switching with programmable gain step Matched 50Ω inputs and output

APPLICATIONS

RF power control and calibration in wireless transmitters

GENERAL DESCRIPTION

The ADL5335 is a digital gain amplifier (DGA) optimized for use in wireless transmitters. A differential input and singleended output facilitates a balun free connection between the broadband integrated transceivers with differential outputs and the RF gain blocks and drivers amplifiers with single-ended inputs.

The gain is programmable via a standard Analog Devices, Inc., serial peripheral interface (SPI) port from a maximum gain of 12.0 dB down to a minimum gain of -8.0 dB with a gain step

Figure 1.
size of 0.5 dB . The ADL5335 also features a fast attack function where the gain can rapidly increase or decrease by the application of a single pulse.

The use of a thermometer-based digital step attenuator (DSA) ensures that gain changes are fundamentally glitch free. The ADL5335 is packaged in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}, 16$-lead LFCSP. A fully populated evaluation board and system demonstration platform (SDP)-based control software are available.

TABLE OF CONTENTS

REVISION HISTORY

12/2017—Revision 0: Initial Version
Pin Configuration and Function Descriptions 8
Typical Performance Characteristics 9
Theory of Operation 13
Basic Structure 13
Digital Interface Overview 13
Applications Information 15
Basic Connections 15
Outline Dimensions 16
Ordering Guide 16

ADL5335

SPECIFICATIONS

VPOS1, VPOS2, VPOS3 $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, impedance out $(\mathrm{Zout})=50 \Omega$, and a differential input drive, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
BAND 1: 2110 MHz TO 2170 MHz					
Gain Range			20		dB
Maximum Gain			12.5		dB
Minimum Gain			-7.5		dB
Gain Flatness	$\pm 200 \mathrm{MHz}$, all gains		0.5		dB
Gain Step Error	All gain states		0.38		dB
Group Delay Variation	Between any attenuation step		20		ps
Output IP3	Maximum gain, 4 dBm per tone		32		dBm
	Minimum gain, -18 dBm per tone		11.6		dBm
Output P1dB	Maximum gain		18.1		dBm
	Minimum gain		-0.2		dBm
Noise Figure	Maximum gain		6.9		dB
	Minimum gain		10.4		dB
Return Loss					
Input			-32		dB
Output	Minimum gain		-25		dB
	Maximum gain		-19		dB
CMRR	vs. frequency ($\pm 200 \mathrm{MHz}$)		25		dB
Gain Range			20		dB
Maximum Gain			12.0		dB
Minimum Gain			-8.0		dB
Gain Flatness	$\pm 200 \mathrm{MHz}$, all gains		0.7		dB
Gain Step Error	All gain states		0.37		dB
Group Delay Variation	Between any attenuation step		30		ps
Output IP3	Maximum gain, 4 dBm per tone		32		dBm
	Minimum gain, -18 dBm per tone		13.1		dBm
Output P1dB	Maximum gain		17.8		dBm
	Minimum gain		-1.1		dBm
Noise Figure	Maximum gain		7.5		dB
	Minimum gain		10.5		dB
Return Loss					
Input			-19		dB
Output	Minimum gain		-24		dB
	Maximum gain		-17		dB
CMRR	vs. frequency ($\pm 200 \mathrm{MHz}$)		26		dB
BAND 42: 3400 MHz TO 3600 MHz					
Gain Range			20		dB
Maximum Gain			10.2		dB
Minimum Gain			-9.8		dB
Gain Flatness	$\pm 200 \mathrm{MHz}$, all gains		0.7		dB
Gain Step Error	All gain states		0.36		dB
Group Delay Variation	Between any attenuation step		20		ps
Output IP3	Maximum gain, 4 dBm per tone		31		dBm
	Minimum gain, -18 dBm per tone		10.9		dBm
Output P1dB	Maximum gain		16.8		dBm
	Minimum gain		2.3		dBm
Noise Figure	Maximum gain		7.5		dB
	Minimum gain		12.2		dB

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Return Loss Input Output CMRR	Minimum gain Maximum gain vs. frequency ($\pm 200 \mathrm{MHz}$)		$\begin{aligned} & -19 \\ & -17 \\ & -11 \\ & 28 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
FREQUENCY $=4.2 \mathrm{GHz}$ Gain Range Maximum Gain Minimum Gain Gain Flatness Gain Step Error Group Delay Variation Output IP3 Output P1dB Noise Figure Return Loss Input Output CMRR	$\pm 200 \mathrm{MHz}$, all gains All gain states Between any attenuation step Maximum gain, -4 dBm per tone Minimum gain, -18 dBm per tone Maximum gain Minimum gain Maximum gain Minimum gain Minimum gain Maximum gain		$\begin{aligned} & 20 \\ & 9.3 \\ & -10.7 \\ & 0.9 \\ & 0.49 \\ & 25 \\ & 29 \\ & 11 \\ & 15.8 \\ & -3.7 \\ & 8.7 \\ & 13.5 \\ & \\ & -24 \\ & -12 \\ & -11 \\ & 29 \\ & \hline \end{aligned}$		dB dB dB dB dB ps dBm dBm dBm dBm dB dB dB dB dB dB
SPI PORT AND FAST ATTACK Logic Low Logic High Fast Attack Response Time	SDIO, SCLK, $\overline{C S}$, FA pins	1.62	20	$\begin{aligned} & 0.18 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
ENABLE INTERFACE Voltage Level To Enable To Disable Time Enable Disable	ENBL pin ENBL voltage ($\mathrm{V}_{\text {EnBL }}$) increasing Enable/disable voltage (Venblon) increasing	$\begin{aligned} & 1.62 \\ & 0 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 0.18 \end{aligned}$	V V ns ns
POWER SUPPLY INTERFACE Supply Voltage Quiescent Current Power Consumption	VPOSx pins Main supply Device enabled Device enabled Power-down mode	4.75	$\begin{aligned} & 5 \\ & 125 \\ & 625 \\ & 18.5 \end{aligned}$	5.25	V mA mW mW

ADL5335

DIGITAL LOGIC TIMING

Table 2.

Parameter	Description	Min	Typ	Max
Unit				
$\mathrm{t}_{\mathrm{CLK}}$	Maximum serial clock rate		25	
t_{HI}	Minimum period that SCLK is in a logic high state	MHz		
t_{LO}	Minimum period that SCLK is in a logic low state	10		ns
t_{S}	Setup time between falling edge of $\overline{C S}$ and SCLK	10		ns
t_{H}	Hold time between data and rising edge of SCLK	15		ns
t_{tS}	Setup time between data and rising edge of SCLK	5		ns
t_{DH}	SCLK to SDIO Hold Time		15	
t_{Z}	Maximum time delay between $\overline{\mathrm{CS}}$ deactivation and SDIO bus to return to high impedance	ns		
$\mathrm{t}_{\text {ACCESS }}$	Maximum time delay between falling edge of SCLK and out data valid for a read operation		5	

SPI Timing Diagram

Figure 2. SPI Timing

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage, V VOS	5.5 V
SCLK, SDIO, $\overline{\mathrm{CS}, ~ F A ~}$	3.9 V
Enable Voltage, ENBL	2.2 V
Input Average RF Power	12 dBm
\quad Equivalent Voltage, Sine Wave Input ${ }^{1}$	$2.5 \mathrm{~V} \mathrm{p-p}$
Internal Power Dissipation	725 mW
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

${ }^{1}$ If the common-mode voltage at the inputs $\left(\mathrm{V}_{\text {com }}\right)$ is closer than 0.625 V from either rail voltage $\left(V_{\text {RAIL }}\right)$, the equivalent voltage reduces to $\left(\left|V_{\text {RAIL }}-V_{\text {COM }}\right|\right) \times 4$, where $\mathrm{V}_{\text {rall }}$ is the rail closest to $\mathrm{V}_{\text {com }}$.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THREMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
Table 4 shows the thermal resistance from the die to ambient $\left(\theta_{\text {JA }}\right)$ and die to lead $\left(\theta_{\text {JC }}\right)$, respectively.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{Jc}}$	Unit
$C P-16-39$	58.7	2.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,4,13	$\begin{aligned} & \text { VPOS1,VPOS2, } \\ & \text { VPOS3 } \end{aligned}$	Power Supplies. Separately decouple each power supply pin using 100 pF and $0.1 \mu \mathrm{~F}$ capacitors.
2,3	RFIN-, RFIN+	RF Negative and Positive Inputs. These pins have a 50Ω differential input pair and are internally accoupled.
5 to 9	GND1, GND2, GND3, GND4, GND5	Ground. Connect these ground pins to a low impedance ground plane.
10	RFOUT	RF Output. This pin has a 50Ω single-ended output and is internally ac-coupled.
11	ENBL	Enable. A logic high on this pin (1.8 V logic) enables operation and a logic low on this pin puts the device in a low power sleep mode.
12	FA	Fast Attack. A logic high on this pin (1.8 V logic) decreases the programmed gain by an additional 2 dB , $4 \mathrm{~dB}, 8 \mathrm{~dB}$, or 16 dB . The fast attack attenuation step is defined by the last two bits of an 8 -bit programming byte that is written to the device via the SPI. When FA returns to a logic low, the gain returns to its normal programmed level. When not using the fast attack function, tie the FA pin to ground.
14	SDIO	Serial Data Input/Output (SDIO), 1.8 V Logic. The gain and fast attack attenuation levels are programmed using eight bits (Register Address 0x100). The 24-bit write consists of an R/W bit, a 15-bit register address, and the eight bits of data. The first six bits of data set the gain and the last two bits set the fast attack attenuation ($-2 \mathrm{~dB},-4 \mathrm{~dB},-8 \mathrm{~dB}$, or -16 dB).
15	SCLK	Serial Clock (SCLK), 1.8V Logic. The gain and fast attack attenuation levels are programmed using eight bits (Register Address 0x100). The 24-bit write consists of an R/W bit, a 15-bit register address, and the eight bits of data. The first six bits of data set the gain and the last two bits set the fast attack attenuation ($-2 \mathrm{~dB},-4 \mathrm{~dB},-8 \mathrm{~dB}$, or -16 dB).
16	$\overline{C S}$	Chip Select Bar ($\overline{\mathrm{CS}}), 1.8 \mathrm{~V}$ Logic. The gain and fast attack attenuation levels are programmed using eight bits (Register Address 0×100). The 24 -bit write consists of an R/W bit, a 15 -bit register address, and the eight bits of data. The first six bits of data set the gain and the last two bits set the fast attack attenuation ($-2 \mathrm{~dB},-4 \mathrm{~dB},-8 \mathrm{~dB}$, or -16 dB).
	EP	Exposed Pad. Connect the exposed pad to a ground plane with a low thermal and electrical impedance.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Supply Current vs. Temperature for Various Power Supplies (VPOS)

Figure 5. Output Third-Order Intercept (OIP3) vs. Frequency for Various Vpos and Temperatures, Maximum Gain $=12 \mathrm{~dB}$,

Output Tones $=4 \mathrm{dBm}$

Figure 6. OIP3 vs. Frequency for Various $V_{\text {POS }}$ and Temperatures, Minimum Gain $=-8 d B$, Output Tones $=-18 \mathrm{dBm}$

Figure 7. Output 1dB Compression vs. Frequency for Various Temperatures and Gains, VPOS $=5 \mathrm{~V}$

Figure 8. Noise Figure vs. Frequency for Various Gain Steps at $V_{P O S}=5 \mathrm{~V}$

Figure 9. Noise Figure vs. Frequency for Various Temperatures and $V_{\text {pos }}$ at Maximum Gain $=12 \mathrm{~dB}$

Figure 10. Gain Step Error vs. Gain Setting for Various Temperatures, $V_{P O S}=5 \mathrm{~V}$

Figure 11. Gain vs. Frequency Logarithmic Response with a Maximum Gain = $+12 d B$ to a Minimum Gain $=-8 d B$ in $1 d B$ Steps

Figure 12. Gain vs. Frequency for All Gain Steps $(+12 d B$ to $-8 d B$, 0.5 dB Step Size), $V_{\text {Pos }}=5 \mathrm{~V}$, Temperature $=25^{\circ} \mathrm{C}$

Figure 13. Gain vs. Frequency for Various Temperatures and VPOS

Figure 14. Forward Transmission $\left(S_{S D 21}\right)$ vs. Frequency, Gain $=12 \mathrm{~dB}$

Figure 15. Reverse Transmission (SDS12) vs. Frequency, Gain $=12 \mathrm{~dB}$

Figure 16. Output Reflection Coefficient ($S_{s 522}$) vs. Frequency, Gain $=12 d B$

Figure 17. Input Reflection Coefficient ($S_{D D 11}$) vs. Frequency, Gain $=12 \mathrm{~dB}$

Figure 18. Group Delay vs. Frequency, Gain $=12 \mathrm{~dB}$

Figure 19. Common-Mode Rejection Ratio (CMRR) vs. Frequency, Gain $=12 \mathrm{~dB}$

Figure 20. Fast Attack Response, On at $16 d B$

Figure 21. Fast Attack Response, Off at $16 d B$

Figure 22. Enable/Disable Time Domain Response

Figure 23. Distortion (HD2 and HD3) vs. Frequency for Various Output Powers (Pout)

THEORY OF OPERATION
 BASIC STRUCTURE

The ADL5335 is an SPI controlled DGA. An integrated, on-chip balun converts a 50Ω differential RF input into a 50Ω singleended RF output. The RF inputs and the RF output utilize internal ac coupling capacitors.

The DGA core consists of a fixed gain amplifier and digitally controlled attenuator. The amplifier has a gain of 12.0 dB . The attenuator has a range of 0 dB to -8.0 dB with +0.5 dB steps and uses a thermometer coding technique to eliminate transient glitches during gain changes.

DIGITAL INTERFACE OVERVIEW

The ADL5335 digital section includes an enable pin (ENBL), a fast attack pin (FA), and a SPI.

Serial Peripheral Interface (SPI)

The SPI uses the three following pins: the serial data input/output (SDIO), the serial clock (SCLK), and the chip select bar ($\overline{\mathrm{CS}})$.
The SPI data register consists of three bytes: one read/write bit (R/W), 15 address bits (A14 to A0), two fast attack (FA) attenuation step size bits (D7 and D6), and six gain control bits (D5 to D0), as shown in Figure 24.
The gain code and fast attack attenuation step size bits are controlled via Register Address 0x100. See Table 6 and Table 7, respectively, for their truth tables.

Table 6. Gain Code Truth Table

6-Bit Binary Gain Code, Bits[D5:D0]	Gain (dB)
000000	+12.0
000001	+11.5
000010	+11.0
000011	+10.5
000100	+10.0
000101	+9.5
000110	+9.0
000111	+8.5
001000	+8.0
001001	+7.5
001010	+7.0
001011	+6.5
001100	+6.0
001101	+5.5
001110	+5.0
001111	+4.5

6-Bit Binary Gain Code, Bits[D5:D0]	Gain (dB)
010000	+4.0
010001	+3.5
010010	+3.0
010011	+2.5
010100	+2.0
010101	+1.5
010110	+1.0
010111	+0.5
011000	0
011001	-0.5
011010	-1.0
011011	-1.5
011100	-2.0
011101	-2.5
011110	-3.0
01111	-3.5
100000	-4.0
100001	-4.5
100010	-5.0
100011	-5.5
100100	-6.0
100101	-6.5
100110	-7.0
100111	-7.5
101000	-8.0

Fast Attack (FA)

The fast attack feature allows the gain to be reduced from its present setting by a predetermined step size. Four different attenuation step sizes are available (see Table 7).

The FA pin controls fast attack mode. A logic high on the FA pin results in an attenuation that is selected by Bits[D7:D6] in the SPI register (Register Address 0x100).

Table 7. Fast Attack Attenuation Step Size Truth Table

6-Bit Binary Gain Code, Bits[D7:D6]	Step Size (dB)
00	-2
01	-4
10	-8
11	-16

Figure 24. Gain and Fast Attack Programming via Register Address 0x100

APPLICATIONS INFORMATION basic connections

Figure 25 shows the basic connections for operating the ADL5335. Apply a 5 V voltage to the supply pins (VPOS1, VPOS2, and VPOS3). Decouple each supply pin with at least one low inductance, surface-mount ceramic, $0.1 \mu \mathrm{~F}$ capacitor placed as close to the device as possible. The balanced differential inputs are decoupled using 100 pF capacitors and so is the 50Ω load on the RF output. The serial peripheral interface pins (SCLK,

SDIO, and $\overline{\mathrm{CS}}$), fast attack (FA), and enable (ENBL) pins operate at an 1.8 V voltage. To enable the ADL5335, pull the ENBL pin high (1.8 V). A low on the ENBL pin sets the device to power-down mode, reducing the current to approximately 3.7 mA .

For additional information on device operation, see the EV-ADL5335SD1Z User Guide.

Figure 25. Basic Connections

ADL5335

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC-4
ure 26. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-39)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADL5335ACPZN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-39
ADL5335ACPZN-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-39
EV-ADL5335SD1Z		Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
EVAL-ADCMP566BCPZ EVAL-ADCMP606BKSZ AD8013AR-14-EBZ AD8033AKS-EBZ AD8044AR-EBZ AD8225-EVALZ ADA4859-3ACP-EBZ ADA4862-3YR-EBZ DEM-OPA-SO-2B AD744JR-EBZ AD8023AR-EBZ AD8030ARJ-EBZ AD8040ARU-EBZ AD8073JR-EBZ AD813AR-14-EBZ AD848JR-EBZ ADA4858-3ACP-EBZ ADA4922-1ACP-EBZ 551600075-001/NOPB DEM-OPA-SO2E THS7374EVM EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ MAX9928EVKIT+ MAX9636EVKIT+ MAX9611EVKIT MAX9937EVKIT+ MAX9934TEVKIT+ MAX44290EVKIT\# MAX2644EVKIT MAX4073EVKIT+ DEM-OPA-SO-2C MAX2643EVKIT ISL28158EVAL1Z MAX40003EVKIT\# MAX2473EVKIT MAX2472EVKIT MAX4223EVKIT MAX9700BEVKIT MADL-011014-001SMB DC1685A DEM-OPA-SO-2D MAX2670EVKIT\# DEM-OPA-SO-1E AD8137YCP-EBZ EVAL-ADA4523-1ARMZ MAX44242EVKIT\# EVAL-LT5401_32FDAZ

