
VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Typical Applications

The HMC996LP4E is ideal for:

- Point-to-Point Radio
- Point-to-Multi-Point Radio
- EW & ECM Subsystems
- X-Band Radar
- Test Equipment & Sensors

Functional Diagram

Features

Wide Gain Control Range: 22 dB Single Control Voltage: -1 to -4.5V Output IP3 @ Max Gain: +34 dBm

Output P1dB: +22 dBm

Low Noise Figure 2dB @ max gain

No External Matching

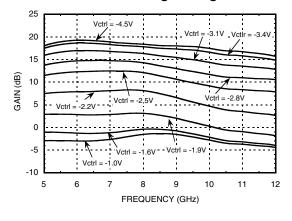
24 Lead 4x4 mm SMT Package: 16 mm²

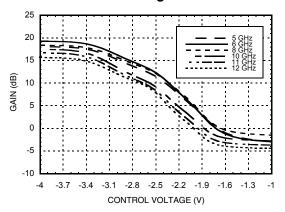
General Description

The HMC996LP4E is a GaAs PHEMT MMIC analog variable gain amplifier and / or driver amplifier which operates between 5 and 12 GHz. Ideal for microwave radio applications, the amplifier provides up to 18.5 dB of gain, output P1dB of up to +23 dBm, and up to +34 dBm of output IP3 at maximum gain, while requiring only 170 mA from a +5V supply. Gain control voltage pin (Vctrl) is provided to allow variable gain control up to 22 dB. Gain flatness is excellent making the HMC996LP4E ideal for EW, ECM and radar applications. The HMC996LP4E is housed in a RoHS compliant 4 x 4 mm QFN leadless package and is compatible with high volume surface mount manufacturing.

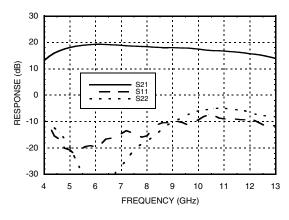
Electrical Specifications, $T_A = +25$ °C, Vdd1, 2= 5V, Vctrl= -4.5V, Idd= 120 mA*

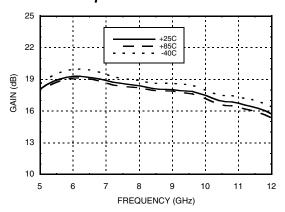
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		5 - 8.5			8.5 - 12		GHz
Gain	16	18.5		13	16		dB
Gain Flatness		±0.5			±1		dB
Gain Variation Over Temperature		0.006			0.006		dB/ °C
Gain Control Range	15	22		15	20		dB
Noise Figure		2.5			2		dB
Input Return Loss		17			9		dB
Output Return Loss		23			7		dB
Output Power for 1 dB Compression (P1dB)	19	22		20	23		dBm
Saturated Output Power (Psat)		23			24		dBm
Output Third Order Intercept (IP3)		34			34		dBm
Total Supply Current (Idd)		120			120		mA

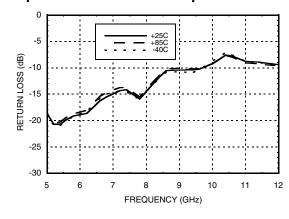

^{*}Set Vctrl = -4.5V and then adjust Vgg1, 2 between -2V to 0V to achieve Idd = 120 mA typical.

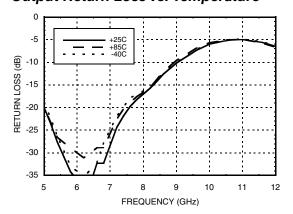


VARIABLE GAIN AMPLIFIER 5 - 12 GHz


Gain vs. Control Voltage Range

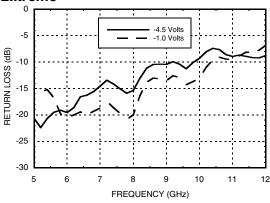

Gain vs. Control Voltage

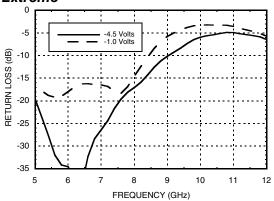

Broadband Gain & Return Loss


Gain vs. Temperature

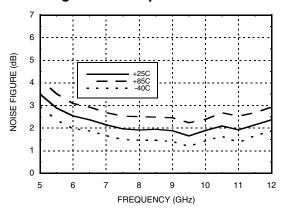
Input Return Loss vs. Temperature

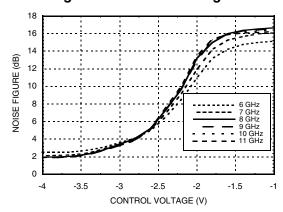
Output Return Loss vs. Temperature

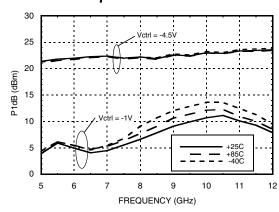


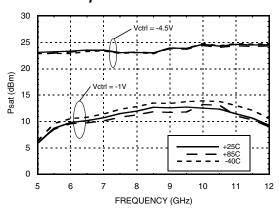


VARIABLE GAIN AMPLIFIER 5 - 12 GHz


Input Return Loss @ Control Voltage Extreme

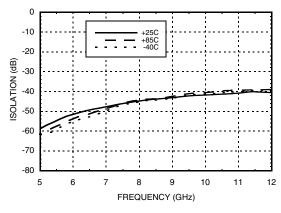

Output Return Loss @ Control Voltage Extreme

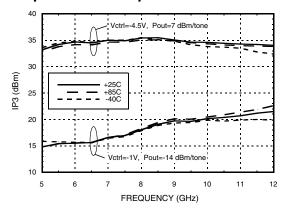

Noise Figure vs. Temperature


Noise Figure vs. Control Voltage

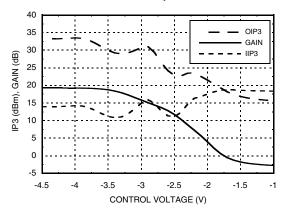
P1dB vs. Temperature

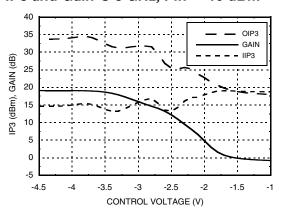
Psat vs. Temperature

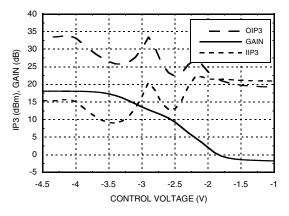




VARIABLE GAIN AMPLIFIER 5 - 12 GHz


Reverse Isolation vs. Temperature


Output IP3 vs. Temperature


IP3 and Gain @ 6 GHz, Pin = -10 dBm

IP3 and Gain @ 8 GHz, Pin = -10 dBm

IP3 and Gain @ 10 GHz, Pin = -10 dBm

VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, 2)	+5.5V		
Gate Bias Voltage (Vgg1, 2)	-3 to 0V		
Gain Control Voltage (Vctrl)	-5 to 0V		
RF Power Input	+20 dBm		
Channel Temperature	175 °C		
Continuous Pdiss (T = 85 °C) (derate 11.5 mW/°C above 85 °C) [1]	1.03 W		
Thermal Resistance (Channel to ground paddle)	86.7 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		
ESD Sensitivity (HBM)	Class 0 Passed 150V		

Bias Voltage

Vdd1,2(V)	Idd Total (mA)		
+5V	120 mA		
Vgg1,2 (V)	Igg Total (mA)		
0V to -2V	<0.1 mA		

Outline Drawing

Package Information

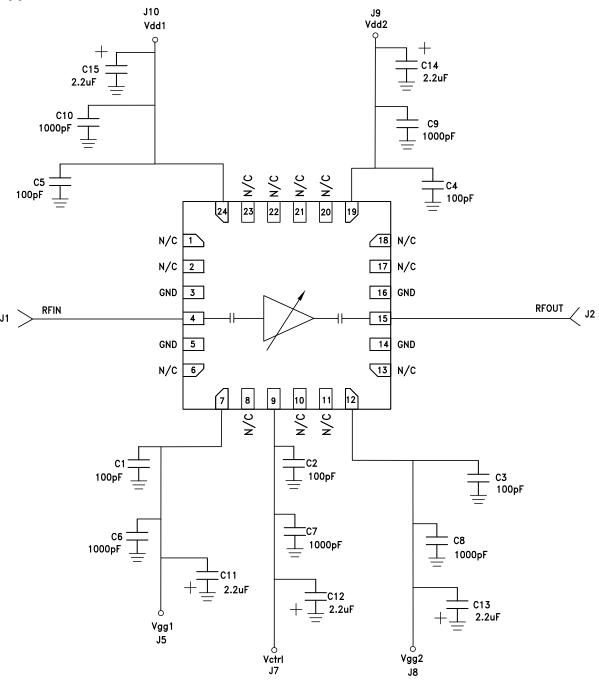
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC996LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [1]	H996 XXXX

SUGGESTED LAND PATTERN.

- [1] Max peak reflow temperature of 260 °C
- [2] 4-Digit lot number XXXX

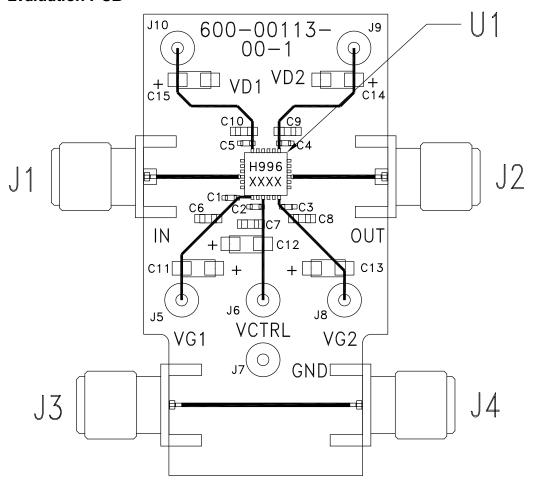
VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic	
1, 2, 6, 8, 10, 11, 13, 17, 18, 20, 21, 22, 23	N/C	The pins are not connected internally: however all data shown herein was measured with these pins connected to RF/DC ground externally		
3, 5, 14, 16	GND	These pins and exposed ground paddle must be connected to RF/DC ground.		
4	RFIN	This pad is AC coupled and matched to 50 Ohm.	RFIN O ESD	
7, 12	Vgg1, 2	Gate control for amplifier. Adjust voltage to achieve typical Idd. Please follow "MMIC Amplifier Biasing Procedure" application note.	Vgg1,2 0	
9	Vctrl	Gain control Voltage for the amplifier. See assembly diagram for required external components.	Vctrl O	
15	RFOUT	This pad is AC coupled and matched to 50 Ohm.		
19, 24	Vdd1, 2	Drain Bias Voltage for the amplifier. See assembly diagram for required external components	OVdd1,2	

VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Application Circuit



VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC996LP4E [1]

Item	Description
J1, J4	PCB Mount SMA RF Connectors
J5 - J10	DC Pin
C1 - C5	100 pF Capacitor, 0402 Pkg.
C6 - C10	1000 pF Capacitor, 0603 Pkg.
C11 - C15	2.2 μF Capacitor, CASE A
U1	HMC996LP4E Variable Gain Amplifier
PCB [2]	600-00113-00 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3
EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+
MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT
EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1
SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB