Data Sheet

FEATURES

SPI interface

Supports daisy-chain mode
9.5Ω on resistance at $25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{~V}$ dual supply
1.6Ω on-resistance flatness at $25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{~V}$ dual supply
Fully specified at $\pm 15 \mathrm{~V},+12 \mathrm{~V}, \pm 5 \mathrm{~V}$
3 V logic-compatible inputs
Rail-to-rail operation
24-lead TSSOP and 24-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

Automatic test equipment
 Data acquisition systems
 Battery-powered systems
 Sample-and-hold systems
 Audio signal routing
 Video signal routing
 Communication systems

GENERAL DESCRIPTION

The ADG1414 is a monolithic complementary metal-oxide semiconductor (CMOS) device containing eight independently selectable switches designed on an industrial CMOS ($i \mathrm{CMOS}^{\circ}$) process. iCMOS is a modular manufacturing process combining high voltage CMOS and bipolar technologies. iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduce the package size.

The ADG1414 is a set of octal, single-pole, single-throw (SPST) switches controlled via a 3-wire serial interface. On resistance is matched closely between switches and is very flat over the full signal range. Each switch conducts equally well in both directions and the input signal range extends to the supplies.

Data is written to these devices in the form of eight bits; each bit corresponds to one channel.

FUNCTIONAL BLOCK DIAGRAM

The ADG1414 uses a versatile 3-wire serial interface that operates at clock rates of up to 50 MHz and is compatible with standard SPI, QSPI ${ }^{\text {m" }}$, MICROWIRE ${ }^{\text {m" }}$, and DSP interface standards. The output of the shift register, SDO, enables a number of these devices to be daisy chained.

At power-up, all switches are in the off condition, and the internal registers contain all zeros.

PRODUCT HIGHLIGHTS

1. 50 MHz serial interface.
2. 9.5Ω on resistance.
3. 1.6Ω on-resistance flatness.
4. 24-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages.

Rev. B

TABLE OF CONTENTS

Features1
Applications. 1
Functional Block Diagram 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
12 V Single Supply 4
$\pm 5 \mathrm{~V}$ Dual Supply 6
Continuous Current per Channel 7
Timing Characteristics 8
Absolute Maximum Ratings 9
Thermal Resistance 9
REVISION HISTORY
11/15-Rev. A to Rev. B
Changes to Vdd/Vss Parameter, Table 2 5
Updated Outline Dimensions 19
1/13—Rev. 0 to Rev. A
Changes to $\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$ Pin Description Column, Table 9 11
Changes to Power-On Reset Section 19
Updated Outline Dimensions 20
ESD Caution 9
Pin Configurations and Function Descriptions 10
Typical Performance Characteristics 12
Test Circuits 15
Terminology 17
Theory of Operation 18
Serial Interface 18
Input Shift Register 18
Power-On Reset 18
Daisy Chaining 18
Outline Dimensions 19
Ordering Guide 19

ADG1414

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS	0.001		1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}} \end{aligned}$
Ido					
IL Inactive	0.3		1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	Digital inputs $=0 \mathrm{~V}$ or V_{L}
IL Active at 30 MHz	0.26			mA typ	Digital inputs toggle between 0 V and V_{L}
		0.3	0.35	mA max	
IL Active at 50 MHz	0.42			mA typ	Digital inputs toggle between 0 V and V_{L}
		0.5	0.55	mA max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / V_{\text {SS }}$			$\pm 4.5 / \pm 16.5$	V min/max	

${ }^{1}$ Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^0]
ADG1414

※5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, G \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS IDD	0.001		1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}} \end{aligned}$
	0.3				
IL Inactive				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}
			1	$\mu \mathrm{A}$ max	
IL Active at 30 MHz	0.26			mA typ	Digital inputs toggle between 0 V and V_{L}
		0.3	0.35	mA max	
IL Active at 50 MHz	0.42			mA typ	Digital inputs toggle between 0 V and V_{L}
		0.5	0.55	mA max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 4.5 / \pm 16.5$	V min/max	

${ }^{1}$ Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT PER CHANNEL

Guaranteed by design, not subject to production test.
Table 4. Eight Channels On

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL					
$\pm 15 \mathrm{~V}$ Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-13.5 \mathrm{~V}$
24-Lead TSSOP ($\left.\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	67	46	31	mA max	
24-Lead LFCSP ($\left.\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$	121	75	42	mA max	
12 V Single Supply					$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
24-Lead TSSOP ($\left.\Theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	64	44	30	mA max	
24-Lead LFCSP ($\theta_{\mathrm{JA}}=30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$)	115	72	41	mA max	
$\pm 5 \mathrm{~V}$ Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}$
24-Lead TSSOP ($\left.\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	48	35	22	mA max	
$24-L e a d ~ L F C S P ~\left(~ ~_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$	86	57	36	mA max	

Guaranteed by design and characterization, not production tested.
Table 5. One Channel On

ADG1414

TIMING CHARACTERISTICS

All input signals are specified with $t_{R}=t_{F}=1 \mathrm{~ns} / \mathrm{V}\left(10 \%\right.$ to 90% of $\left.V_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$ (see Figure 2). $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 16.5 V ; $\mathrm{V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$ to $0 \mathrm{~V} ; \mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V or V_{DD} (whichever is less); $\mathrm{GND}=0 \mathrm{~V}$; all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Guaranteed by design and characterization, not production tested.

Table 6.

Parameter	Limit at TMIN, TMAX $^{\text {m }}$	Unit	Conditions/Comments
$\mathrm{t}_{1}{ }^{1}$	20	ns min	SCLK cycle time
t_{2}	9	ns min	SCLK high time
t_{3}	9	ns min	SCLK low time
t_{4}	5	ns min	$\overline{\text { SYNC }}$ to SCLK active edge setup time
t_{5}	5	ns min	Data setup time
t_{6}	5	ns min	Data hold time
t_{7}	5	ns min	SCLK active edge to $\overline{S Y N C}$ rising edge
t_{8}	15	ns min	Minimum $\overline{\text { SYNC }}$ high time
t_{9}	5	ns min	$\overline{\text { SYNC }}$ rising edge to next SCLK active edge ignored
t_{10}	5	ns min	SCLK active edge to $\overline{S Y N C}$ falling edge ignored
$\mathrm{t}_{11}{ }^{2}$	40	ns max	SCLK rising edge to SDO valid
t_{12}	15	ns min	Minimum $\overline{\text { RESET }}$ pulse width

${ }^{1}$ Maximum SCLK frequency is 50 MHz at $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $16.5 \mathrm{~V} ; \mathrm{V}_{S S}=-16.5 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V or V_{DD} (whichever is less); GND $=0 \mathrm{~V}$.
${ }^{2}$ Measured with the $1 \mathrm{k} \Omega$ pull-up resistor to V_{L} and 20 pF load. t_{11} determines the maximum SCLK frequency in daisy-chain mode.

Timing Diagrams

Figure 3. Daisy-Chain Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

Parameter	Rating
$V_{\text {dD }}$ to V $\mathrm{V}_{\text {S }}$	35 V
VDD to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
VL to GND	-0.3 V to +7 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{L}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Continuous Current, Sx or Dx Pins	Table 4 specifications + 15\%
Peak Current, Sx or Dx (Pulsed at 1 ms, 10\% Duty Cycle Maximum)	
TSSOP Package	300 mA
LFCSP Package	400 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature, Pb free	$260^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

${ }^{1}$ Overvoltages at the analog and digital inputs are clamped by internal diodes. Limit the current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating may be applied at any one time.

THERMAL RESISTANCE

Table 8. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathbf{\prime} \mathbf{c}}$	Unit
24-Lead TSSOP ${ }^{1}$	112.6	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
24-Lead LFCSP ${ }^{2}$	30.4		${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ 4-layer board.
${ }^{2}$ 4-layer board and exposed paddle soldered to $\mathrm{V}_{\text {ss }}$.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. TSSOP Pin Configuration

Figure 5. LFCSP Pin Configuration

Table 9. Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	22	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates of up to 50 MHz .
2	23	V ${ }_{\text {D }}$	Most Positive Power Supply Potential.
3	24	DIN	Serial Data Input. This device has an 8-bit shift register. Data is clocked into the register on the falling edge of the serial clock input.
4	1	GND	Ground (0V) Reference.
5	2	S1	Source Terminal 1. This pin can be an input or an output.
6	3	D1	Drain Terminal 1. This pin can be an input or an output.
7	4	S2	Source Terminal 2. This pin can be an input or an output.
8	5	D2	Drain Terminal 2. This pin can be an input or an output.
9	6	S3	Source Terminal 3. This pin can be an input or an output.
10	7	D3	Drain Terminal 3. This pin can be an input or an output.
11	8	S4	Source Terminal 4. This pin can be an input or an output.
12	9	D4	Drain Terminal 4. This pin can be an input or an output.
13	10	D5	Drain Terminal 5. This pin can be an input or an output.
14	11	S5	Source Terminal 5. This pin can be an input or an output.
15	12	D6	Drain Terminal 6. This pin can be an input or an output.
16	13	S6	Source Terminal 6. This pin can be an input or an output.
17	14	D7	Drain Terminal 7. This pin can be an input or an output.
18	15	S7	Source Terminal 7. This pin can be an input or an output.
19	16	D8	Drain Terminal 8. This pin can be an input or an output.
20	17	S8	Source Terminal 8. This pin can be an input or an output.
21	18	$\mathrm{V}_{\text {s }}$	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
22	19	SDO RESET	Serial Data Output. This pin can be used for daisy-chaining a number of these devices together or for reading back the data in the shift register for diagnostic purposes. The serial data is transferred on the rising edge of SCLK and is valid on the falling edge of the clock. Pull this open-drain output to the supply with an external resistor.
23	20	$\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$	$\overline{\operatorname{RESET}} /$ Logic Power Supply Input (V_{L}). Under normal operation, drive the $\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$ pin with a 2.7 V to 5 V supply. Pull the pin low $(<0.8 \mathrm{~V})$ for a short period of time (15 ns is sufficient) to complete a hardware reset. All switches are opened, and the appropriate registers are cleared to 0 . When using the $\overline{\operatorname{RESET}} / V_{\mathrm{L}}$ pin to complete a hardware reset, all other SPI pins ($\overline{\mathrm{SYNC}}, \mathrm{SCLK}$, and DIN) must be driven low.

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
24	21	$\overline{\text { SYNC }}$	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\text { SYNC }}$ goes low, it powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in on the falling edges of the following clocks. Taking $\overline{\text { SYNC high updates the switch }}$condition. Exposed Pad. Exposed pad tied to the substrate, $\mathrm{V}_{\text {ss. }}$ N/A 1\quad EP

[^1]
ADG1414

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, Dual Supply
($V_{D D}=10 \mathrm{~V}$ to 16.5 V and $V_{S S}=-10 \mathrm{~V}$ to $\left.-16.5 \mathrm{~V}\right)$

Figure 7. On Resistance as a Function of $V_{D}(V s)$, Dual Supply $\left(V_{D D}=3.0 \mathrm{~V}\right.$ to 7 V and $V_{S S}=-3.0 \mathrm{~V}$ to $\left.-7 \mathrm{~V}\right)$

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, Single Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, for Different Temperatures, ± 15 V Dual Supply

Figure 10. On Resistance as a Function of $V_{D}\left(V_{s}\right)$, for Different Temperatures, ± 5 V Dual Supply

Figure 11. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, for Different Temperatures, 12 V Single Supply

Figure 12. Leakage Current as a Function of Temperature, ± 15 V Dual Supply

Figure 13. Leakage Current as a Function of Temperature, ± 5 V Dual Supply

Figure 14. Leakage Current as a Function of Temperature, 12 V Single Supply

Figure 15. IDD vs. Logic Level

Figure 16. Charge Injection vs. Source Voltage (Vs)

Figure 17. Transition Time vs. Temperature

Figure 18. Off Isolation vs. Frequency

Figure 19. On Response vs. Frequency

Figure 20. Crosstalk vs. Frequency

Figure 21. $T H D+N$ vs. Frequency, ± 15 V Dual Supply

Figure 22. ACPSRR vs. Frequency

TEST CIRCUITS

Figure 23. On Resistance

Figure 24. Off Leakage

Figure 25. On Leakage

Figure 26. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{v_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 27. Channel-to-Channel Crosstalk

Figure 28. Insertion Loss

Figure 29. THD + Noise

Figure 30. Switching Times

TERMINOLOGY

$I_{D D}$
The positive supply current.
Iss
The negative supply current.
V_{D} (V_{s})
The analog voltage on Terminal Dx or Terminal Sx.
R_{on}
The ohmic resistance between Terminal Dx and Terminal Sx.
Δ Ron $_{\text {on }}$
The difference between the Ron of any two channels.
$\mathbf{R}_{\text {flat (on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.
Is (Off)
The source leakage current with the switch off.
I_{D} (Off)
The drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$

The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$V_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\mathrm{INL}}\left(\mathrm{I}_{\mathrm{INH}}\right)$
The input current of the digital input.
Cs (Off)
The off switch source capacitance, measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$

The on switch capacitance, measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
The digital input capacitance.
ton
The delay between applying the digital control input and the output switching on. See Figure 30.
toff
The delay between applying the digital control input and the output switching off. See Figure 30.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

A measure of the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

THEORY OF OPERATION

The ADG1414 is a set of serially controlled, octal SPST switches. Each of the eight bits of the 8-bit write corresponds to one switch of the device. A Logic 1 in the particular bit position turns the switch on, whereas a Logic 0 turns the switch off. Because an individual bit independently controls each switch, this independence provides the option of having any, all, or none of the switches turned on.

SERIAL INTERFACE

The ADG1414 has a 3-wire serial interface ($\overline{\text { SYNC }}$, SCLK, and DIN pins) that is compatible with SPI, QSPI, and MICROWIRE interface standards, as well as most DSPs. See Figure 2 for a timing diagram of a typical write sequence.
The write sequence begins by bringing the $\overline{\text { SYNC }}$ line low, which enables the input shift register. Data from the DIN line is clocked into the 8 -bit input shift register on the falling edge of SCLK. The serial clock frequency can be as high as 50 MHz , making the ADG1414 compatible with high speed DSPs.
Data can be written to the shift register in more or less than eight bits. In each case, the shift register retains the last eight bits that were written. When all eight bits have been written into the shift register, the $\overline{\text { SYNC }}$ line is brought high again. The switches are updated with the new configuration, and the input shift register is disabled. With $\overline{\text { SYNC }}$ held high, the input shift register is disabled; therefore, further data or noise on the DIN line has no effect on the shift register.
Data appears on the SDO pin on the rising edge of SCLK suitable for daisy chaining or readback, delayed by eight bits.

INPUT SHIFT REGISTER

The input shift register is eight bits wide (see Table 10). Each bit controls one switch. These data bits are transferred to the switch register on the rising edge of $\overline{S Y N C}$.
Table 10. ADG1414 Input Shift Register Bit Map ${ }^{1}$
MSB

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
S8	S7	S6	S5	S4	S3	S2	S 1

[^2]
POWER-ON RESET

The ADG1414 contains a power-on reset circuit. On power-up of the device, all switches are in the off condition and the internal shift register is filled with zeros and remains so until a valid write takes place.
The device also has a $\overline{\operatorname{RESET}} / \mathrm{V}_{\mathrm{L}}$ pin. Under normal operation, drive the $\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$ pin with a 2.7 V to 5 V supply and pull the pin low for short period of time (15 ns is sufficient) to complete the hardware reset.
When using the $\overline{\operatorname{RESET}} / \mathrm{V}_{\mathrm{L}}$ pin to do a hardware reset, drive all other SPI pins ($\overline{\text { SYNC, SCLK, and DIN) low. This is to prevent }}$ current flow due to ESD protection diodes on the V_{L} pin to the SPI pins.
When the $\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$ pin is low, all switches are off and the appropriate registers are cleared to 0 .

DAISY CHAINING

For systems that contain several switches, the SDO pin can be used to daisy-chain several devices together. The SDO pin can also be used for diagnostic purposes and provide serial readback, wherein the user can read back the switch contents.
SDO is an open-drain output that must be pulled to the V_{L} supply with an external resistor.
The SCLK is continuously applied to the input shift register when SYNC is low. If more than eight clock pulses are applied, the data ripples out of the shift register and appears on the SDO line. This data is clocked out on the rising edge of SCLK and is valid on the falling edge. By connecting this line to the DIN input on the next device in the chain, a multiswitch interface is constructed. Each device in the system requires eight clock pulses; therefore, the total number of clock cycles must equal 8 N , where N is the total number of devices in the chain.
When the serial transfer to all devices is complete, $\overline{\mathrm{SYNC}}$ is taken high. This prevents any further data from being clocked into the input shift register.
The serial clock can be a continuous or a gated clock. A continuous SCLK source can be used only if $\overline{\text { SYNC }}$ can be held low for the correct number of clock cycles. In gated clock mode, a burst clock containing the exact number of clock cycles must be used, and $\overline{\text { SYNC }}$ must be taken high after the final clock to latch the data. Gated clock mode reduces power consumption by reducing the active clock time.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AD
Figure 32. 24-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-24$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.
Figure 33. 24-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-24-7)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG1414BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
ADG1414BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$24-$ Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
ADG1414BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-7

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-8MSOPEBZ TPS2061EVM-292 MAX4993EVKIT+ ISL54059EVAL1Z MAX4989EVKIT+ MAX14983EEVKIT\#
MAX14589EEVKIT\# TPS2041BEVM TPS2041BEVM-292 TPS2051BEVM TPS2560DRCEVM-424 TSU6721EVM BOB-09056 EKIT01-
HMC1027BG TPS2561DRCEVM-424 2717 ISL54220IRUEVAL1Z TS3USB221AEVM 126968-HMC857LC5 EVAL-ADGS1212SDZ TPS22924CEVM-532 ASL1101 SIP32102EVB DC858A DC892A-B EVAL-10MSOPEBZ EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ EVAL-28TSSOPEBZ EVAL-5SC70EBZ EVAL-ADG4612EBZ EVAL-ADG5243FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z EVAL-ADG5412BFEBZ EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVALADG854EBZ EVAL-ADG884EBZ EVAL-ADG888EBZ EVAL-ADGS1208SDZ EVAL-ADGS1209SDZ EVAL-ADGS1409SDZ EVALADGS1412SDZ EVAL-ADGS5414SDZ DFR0576 DG1208EVKIT\# DG1209EVKIT\#

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ N/A means not applicable.

[^2]: ${ }^{1}$ Logic $0=$ switch off, and Logic $1=$ switch on.

