Using the EVAL-5CH6CHSOICEBZ iCoupler Standard Data Isolator Evaluation Board

FEATURES

Access to all data channels Multiple connection options
Support for active probes
Provisions for cable terminations
Support for printed circuit board (PCB) edge mounted coaxial connectors

Easy configuration

SUPPORTED iCoupler DEVICES

Sample iCoupler digital isolators must be ordered separately; supported iCoupler devices are as follows: ADuM150N/ADuM151N/ADuM152N ADuM160N/ADuM161N/ADuM162N/ADuM163N ADuM250N/ADuM251N/ADuM252N ADuM260N/ADuM261N/ADuM262N/ADuM263N

Figure 1.

GENERAL DESCRIPTION

The EVAL-5CH6CHSOICEBZ supports 5-channel and 6-channel iCoupler standard data isolators in a 16 -lead SOIC package. The evaluation board provides a JEDEC standard, 16-lead SOIC_N and SOIC_W pad layout. This layout supports signal distribution, loopback, and loads referenced to the VDDx or GNDx planes, as well as optimal bypass capacitance. Signal sources can be conducted to the evaluation board through header pins or through edge mounted SMA connectors (SMA connectors must be ordered separately). Screw terminal blocks on the evaluation board provide power connections.

The evaluation board includes 0.2 inch header positions for compatibility with active probes (probe header pins must be ordered separately).

The evaluation board follows best PCB design practices for 4-layer boards, including a full power plane and ground plane on each side of the isolation barrier. No other electromagnetic interference (EMI) or noise mitigation design features are included on the evaluation board. In cases of high speed operation, or when ultralow emissions are required, refer to the AN-1109 Application Note for additional evaluation board layout techniques.

TABLE OF CONTENTS

Features 1
Supported iCoupler Devices 1
Photograph of the Evaluation Board 1
General Description 1
Revision History 2
Evaluation Board Circuitry 3
PCB Evaluation Goals. 3
Connectors 3
REVISION HISTORY
10/2016-Rev. 0 to Rev. A
Added ADuM250N/ADuM251N/ADuM252N and ADuM260N/ ADuM261N/ADuM262N/ADuM263N.

\qquad
Throughout
Change to General Description 1
9/2016-Rev. 0 to Rev. A
Changes to Features Section, Supported iCoupler DevicesSection, and General Description Section 1
Changes to PCB Evaluation Goals Section 3
Input Power. 3
Data Input/Output (I/O) Structures 3
Bypass Capacitance on the PCB 4
High Voltage Capability 4
Evaluation Board Schematics and Artwork 5
Ordering Information 8
Bill of Materials. 8

5/2016—Revision 0: Initial Version

EVALUATION BOARD CIRCUITRY PCB EVALUATION GOALS

The EVAL-5CH6CHSOICEBZ achieves the following goals:

- Evaluates the full range of i Coupler data transfer functions.
- Independently powers each side of an i Coupler isolator.
- Allows high differential voltage to be applied between the two sides of an iCoupler isolator. The evaluation board is intended for evaluation of the components, but is not safety certified for high voltage operation. If applying differential voltages above 60 V , external safety measures appropriate for the voltage must be in place.
- Allows easy connection to power supplies, data channels, and instrumentation.

The evaluation board comes installed with power terminals, bypass capacitors, and header pins. The EVAL-ADuM163N0EBZ is available with the ADuM163N0 device, which is installed on the EVAL-5CH6CHSOICEBZ evaluation board. All other compatible i Coupler digital isolators must be ordered and installed separately on the EVAL-5CH6CHSOICEBZ evaluation board.
The board is compatible with 5-channel and 6-channel devices, such as the ADuM150N/ADuM151N/ADuM152N, the ADuM160N/ADuM161N/ADuM162N/ADuM163N, the ADuM250N/ADuM251N/ADuM252N, and the ADuM260N/ ADuM261N/ADuM262N/ADuM263N.

CONNECTORS

The PCB provides support for three types of interconnections.

- SMA edge mounted connectors
- Through-hole signal ground pairs
- Terminal blocks for power connections

With these three options, temporary and permanent connections to the evaluation board can be made.

When coaxial connections are required, SMA connector positions are available for digital input/output signals and the VDD1/VDD2 power supplies. The SMA connector positions are unpopulated as shipped and must be ordered from a distributor separately. Figure 2 shows examples of installed SMA connectors; these connectors are not only low profile and provide excellent mechanical connections to the PCB, but also support 50Ω coaxial cabling.

Figure 2. Optional Components
Power can be connected through the J1 and J2 screw terminals or through the optional VDD1 and VDD2 SMA connectors. Signals can be routed in or out with the provided header pins or the optional SMA connectors. The pin spacing of each through-hole connector is 0.1 inch between the centers. There are additional signal test points with 0.2 inch spacing provided for active scope probes. These header pins must be added separately. The installed probe points are shown in Figure 2.

INPUT POWER

Each side of an i Coupler standard data isolator requires an offboard power source. On the silkscreen, the J1 and J2 screw terminals are marked 1 for VDDx and 2 for GNDx.

Divided power and ground planes are present on Layer 2 and Layer 3 of the PCB on each side of the isolation barrier. This configuration is shown in Figure 6 and Figure 7, respectively.

DATA INPUT/OUTPUT (I/O) STRUCTURES

Each data channel has a variety of structures to help configure, load, and monitor both the input and output. Figure 3 shows an example of the routing from an external connection to the pin of the device under test (DUT). Each data channel has similar connections.
Starting at the external connection, the signal path is constructed in the following order (see Figure 3 for the locations of these components):

1. A pad layout for a PCB board edge mounted SMA connector.
2. Two 0805 pads are provided where 100Ω resistors to ground can be installed. The combined resistance is 50Ω to provide a termination for a standard coaxial cable.
3. A standard 0805 pad layout that allows the coaxial and termination structures to be connected to the rest of the signal path.
4. A 0603 pad layout between the signal path and VDDx for a pull-up resistor, if required.

UG-936

5. A populated 2-pin header to provide a signal ground pair for use with clip leads or for temporarily shorting a channel to ground.
6. Groupings of three open through holes consisting of a signal and two ground connections. These holes can hardwire signal wires into the PCB, install a header to accept an active probe, or install a 2-pin header to allow adjacent channels to temporarily be shorted together.
7. A 0805 pad layout between the signal and GNDx where a load capacitor or pull-down resistor can be installed.

Figure 2 shows many of the optional components installed, as well as how the jumpers can temporarily connect channels. Figure 2 also shows a signal connected to the first channel SMA, which is then fanned out to the top three channels and monitored by an active scope probe.

BYPASS CAPACITANCE ON THE PCB

Several positions and structures are provided to allow optimal bypass capacitance for the DUT on the evaluation board. Provisions are made for optional surface-mount bulk capacitors to be installed near the power connectors to compensate for long cables to the power supply. Bypass capacitors are installed near the i Coupler data isolator and consist of a $0.1 \mu \mathrm{~F}$ capacitor for each DUT VDDx pin on the top side of the evaluation board.

The PCB also implements a distributed capacitive bypass. This bypass consists of power and ground planes closely spaced on the inner layers of the PCB, which reduces noise and the transmission of EMI without using complex design features.

HIGH VOLTAGE CAPABILITY

This PCB is designed in adherence with 2500 V basic insulation practices. High voltage testing beyond 2500 V is not recommended. Do not rely on the evaluation board for safety functions.

NOTES

1. THE NUMBERED COMPONENTS IN THIS FIGURE CORRESPOND

TO THE DESCRIPTIONS IN THE DATA I/O STRUCTURES SECTION.
Figure 3. Configuration and Monitoring Structures

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 7. VDD1 and VDD2 Power Plane (Layer 3)

Figure 8. Bottom Layer Assembly and Routing (Layer4)

ORDERING INFORMATION

BILL OF MATERIALS

Table 1.

Qty	Reference Designator	Description	Manufacturer/Part Number
1	U1	DUT	Analog Devices, Inc./ ADuM163NOBRZ 1
2	C13, C14	$0805,10 \mu$ F capacitor, CER monolithic	Not applicable
2	C7, C8	$0805,0.1 \mu$ F capacitor, Chip X7R	Not applicable
2	J1, J2	PCB screw terminal	Multicomp/MC000044
12	P3, P4, P7, P8, P11, P12, P15, P16, P20, P22, P24, P26	2-pin header, 100 mil spacing	FCI/69157-102HLF
14	A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2, VDD1, VDD2	SMA edge connector (not installed)	Johnson/142-0701-851
14	P1, P2, P5, P6, P9, P10, P13, P14, P17 to P19, P21, P23, P25	2-pin header, 200 mil spacing (not installed)	Not applicable
12	C3 to C6, C9 to C12, C15 to C18	0603, signal load (not installed)	Not applicable
24	R16 to R19, R21 to R24, R35, R40 to R50, R57 to R60	$0805,100 \Omega$ resistors (not installed)	Not applicable
12	R1 to R15, R20, R25 to R34, R36 to R39, R51 to R56	$0805,0 \Omega$ resistors (not installed)	Not applicable

[^0]ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

 submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB MLX80104 TESTINTERFACE I2C-CPEV/NOPB ISO35TEVM-434 416100120-3 XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB\# MAX9286COAXEVKIT\# MAX3100EVKIT MAX13235EEVKIT MAX14970EVKIT\# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT\# MAXCAM705OV635AAA\# MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB\# MAX13035EEVKIT+ DC1794A SN65HVS885EVM EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL MAX16972AGEEVKIT\# MARS1-DEMO3-ADAPTER-GEVB MAX7315EVKIT+ PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177\# EVAL-ADM2567EEBZ EVAL-ADN4654EBZ MAX9275COAXEVKIT\# MAX2202XEVKIT\#

[^0]: ${ }^{1}$ This is the DUT installed on the EVAL-ADuM163NOEBZ; otherwise, this location is unpopulated.

