2.5 V to $5.5 \mathrm{~V}, 500 \mu \mathrm{~A}$, Quad Voltage Output 12-Bit DAC in 10-Lead Package

Enhanced Product

FEATURES

Enhanced product features
Supports defense and aerospace applications (AQEC)
Military temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request
Four buffered 12-Bit DACs in 10-lead MSOP
S Version: ± 10 LSB INL
Low power operation: $\mathbf{5 0 0 \mu \mathrm { A }}$ at $\mathbf{3} \mathrm{V}, \mathbf{6 0 0} \mu \mathrm{A}$ at 5 V
2.5 V to 5.5 V power supply

Guaranteed monotonic by design over all codes
Power-down to $\mathbf{8 0}$ nA at $\mathbf{3}$ V, $\mathbf{2 0 0}$ nA at $\mathbf{5}$ V
Double-buffered input logic
Output range: 0 V to $\mathrm{V}_{\text {ref }}$
Power-on reset to 0 V
Simultaneous update of outputs ($\overline{\text { LDAC }}$ function)
On-chip, rail-to-rail output buffer amplifiers
Temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

APPLICATIONS

Portable battery-powered instruments
Digital gain and offset adjustment
Programmable voltage and current sources
Programmable attenuators
Industrial process control

GENERAL DESCRIPTION

The AD5324-EP ${ }^{1}$ is a quad 12 -bit buffered voltage output digital-to-analog converter (DAC) in a 10 -lead MSOP package that operates from a single 2.5 V to 5.5 V supply, consuming $500 \mu \mathrm{~A}$ at 3 V . The on-chip output amplifiers allows rail-to-rail output swing to be achieved with a slew rate of $0.7 \mathrm{~V} / \mu \mathrm{s}$. A 3-wire serial interface is used; it operates at clock rates up to 30 MHz and is compatible with standard serial peripheral interface (SPI), QSPI"', MICROWIRE ${ }^{\text {m" }}$, and DSP interface standards.

The references for the four DACs are derived from one reference pin. The outputs of all DACs can be updated simultaneously using the software $\overline{\mathrm{LDAC}}$ function. The part incorporates a power-on reset circuit and ensures that the DAC outputs power up to 0 V and remains there until a valid write takes place to the device. The part contains a power-down feature that reduces the current consumption of the device to 200 nA at $5 \mathrm{~V}(80 \mathrm{nA}$ at 3 V$)$.

The low power consumption of this part in normal operation makes it ideally suited to portable battery-operated equipment. The power consumption is 3 mW at 5 V , and 1.5 mW at 3 V , reducing to $1 \mu \mathrm{~W}$ in power-down mode.
Full details about this enhanced product are available in the AD5324 data sheet, which must be consulted in conjunction with this data sheet.
${ }^{1}$ Protected by U.S. Patent No. 5,969,657.

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
AC Characteristics 4
REVISION HISTORY
6/2019—Rev. 0 to Rev. A
Changes to Patent Information. 1
Changes to Offset Error Parameter, Table 1 and Gain Error
Parameter, Table 1 3
Changes to Peak Temperature Parameter, Table 4 6
Updated Outline Dimensions 11
Timing Characteristics 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Outline Dimensions 11
Ordering Guide 11

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=2 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{GND} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ to GND ; all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 1.

	S Version			
Parameter	Min	Typ	Max	Unit

[^0]
AC CHARACTERISTICS

$V_{D D}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{GND} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ to GND; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

Parameter ${ }^{1}$	S Version ${ }^{2}$			Unit	Conditions/Comments
	Min	Typ	Max		
Output Voltage Settling Time					$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
		8	10	$\mu \mathrm{s}$	$1 / 4$ scale to $3 / 4$ scale change (0×400 to $0 \times C 00$)
Slew Rate		0.7		V/ $/ \mathrm{s}$	
Major Code Transition Glitch Energy		12		nV -sec	1 LSB change around major carry
Digital Feedthrough		1		nV -sec	
Digital Crosstalk		1		nV -sec	
DAC-to-DAC Crosstalk		3		n - -sec	
Multiplying Bandwidth		200		kHz	$\mathrm{V}_{\text {REF }}=2 \mathrm{~V} \pm 0.1 \mathrm{~V}$ p-p
Total Harmonic Distortion		-70		dB	$\mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$ p-p; frequency $=10 \mathrm{kHz}$

[^1]
Enhanced Product

TIMING CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V ; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 3.

Parameter ${ }^{1,2,3}$	Limit at $\mathrm{T}_{\text {min, }} \mathrm{T}_{\text {max }}$		Unit	Conditions/Comments
	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5 V		
t_{1}	40	33	ns min	SCLK cycle time
t_{2}	16	13	ns min	SCLK high time
t_{3}	16	13	ns min	SCLK low time
t_{4}	16	13	ns min	$\overline{\text { SYNC }}$ to SCLK falling edge setup time
t_{5}	5	5	ns min	Data setup time
t_{6}	4.5	4.5	ns min	Data hold time
t_{7}	0	0	ns min	SCLK falling edge to $\overline{\text { SYNC }}$ rising edge
t_{8}	80	33	$n s$ min	Minimum $\overline{\text { SYNC }}$ high time

${ }^{1}$ Guaranteed by design and characterization, not production tested.
${ }^{2}$ All input signals are specified with $\operatorname{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{H}}\right) / 2$.
${ }^{3}$ See Figure 2.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

Parameter ${ }^{1}$	Rating
$\mathrm{V}_{\text {DD }}$ to GND	-0.3 V to +7V
Digital Input Voltage to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Reference Input Voltage to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
VoutA through VoutD to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range	
Industrial (EP Version)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ($\mathrm{T}_{\text {max }}$ ma	$150^{\circ} \mathrm{C}$
10-Lead MSOP	
Power Dissipation	($\mathrm{T}_{\text {J max }}-\mathrm{T}_{\mathrm{A}}$)/ $\theta_{\text {JA }}$
$\theta_{\text {JA }}$ Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {лc }}$ Thermal Impedance	$44^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering	
Peak Temperature	$260^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

[^2]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. MSOP Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$V_{\text {DD }}$	Power Supply Input. This part can be operated from 2.5 V to 5.5 V and the supply can be decoupled to GND.
2	VoutA	Buffered Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.
3	VoutB	Buffered Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.
4	VoutC	Buffered Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.
5	REFIN	Reference Input Pin for All Four DACs. It has an input range from 0.25 V to $\mathrm{V}_{\text {DD }}$.
6	VoutD	Buffered Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.
7	GND	Ground Reference Point for All Circuitry on the Part.
8	DIN	Serial Data Input. This device has a 16 -bit shift register. Data is clocked into the register on the falling edge of the serial clock input. The DIN input buffer is powered down after each write cycle.
9	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at clock speeds up to 30 MHz . The SCLK input buffer is powered down after each write cycle.
10	$\overline{\text { SYNC }}$	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\text { SYNC }}$ goes low, it enables the input shift register and data is transferred in on the falling edges of the following 16 clocks. If $\overline{\operatorname{SYNC}}$ is taken high before the $16^{\text {th }}$ falling edge of SCLK, the rising edge of $\overline{\text { SYNC }}$ acts as an interrupt and the write sequence is ignored by the device.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical Integral Nonlinearity (INL) Plot

Figure 5. Typical Differential Nonlinearity (DNL) Plot

Figure 6. Offset Error and Gain Error vs. Temperature

Figure 7. INL and DNL Error vs. Temperature

Figure 8. Offset Error and Gain Error vs. VDD

Figure 9. Vout Source and Sink Current Capability

Figure 10. Supply Current vs. DAC Code

Figure 11. Supply Current vs. Supply Voltage

Figure 12. Power-Down Current vs. Supply Voltage

Figure 13. Supply Current vs. Logic Input Voltage

CH1 1V, CH2 5V, TIME BASE $=1 \mu \mathrm{~s} / \mathrm{DIV}$

Figure 14. Half-Scale Settling ($1 / 4$ to $3 / 4$ Scale Code Change)

Figure 15. Power-On Reset to 0 V

Figure 16. Exiting Power-Down to Midscale

Figure 17. $I_{D D}$ Histogram with $V_{D D}=3 \mathrm{~V}$ and $V_{D D}=5 \mathrm{~V}$

Figure 18. Major-Code Transition Glitch Energy

Figure 19. Multiplying Bandwidth (Small-Signal Frequency Response)

Figure 20. Full-Scale Error vs. $V_{\text {REF }}$

Figure 21. DAC-to-DAC Crosstalk

Enhanced Product

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 22. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Marking Code
AD5324SRMZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10-$ Lead Mini Small Outline Package (MSOP)	RM-10	DFT

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

[^0]: ${ }^{1}$ DC specifications tested with the outputs unloaded.
 ${ }^{2}$ Linearity is tested using a reduced code range: Code 115 to Code 3981.
 ${ }^{3}$ Guaranteed by design and characterization, not production tested.
 ${ }^{4}$ For the amplifier output to reach the minimum voltage, offset error must be negative. For the amplifier output to reach the maximum voltage, $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}$ and offset plus gain error must be positive.
 ${ }^{5}$ IDD specification is valid for all DAC codes; interface inactive; all DACs active; load currents excluded.

[^1]: ${ }^{1}$ Guaranteed by design and characterization, not production tested.
 ${ }^{2}$ Temperature range (S Version): $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; typical at $+25^{\circ} \mathrm{C}$.

[^2]: ${ }^{1}$ Transient currents of up to 100 mA do not cause SCR latch-up.

