Data Sheet

FEATURES

High integration

32-channel, 14-bit denseDAC ${ }^{\oplus}$ with integrated high voltage output amplifier

Guaranteed monotonic

Housed in $15 \mathrm{~mm} \times 15 \mathrm{~mm}$ CSP_BGA package
Full-scale output voltage programmable from 50 V to 200 V
via reference input
$550 \mu \mathrm{~A}$ drive capability
Integrated silicon diode for temperature monitoring
DSP-/microcontroller-compatible serial interface
1.2 MHz channel update rate

Asynchronous $\overline{\text { RESET facility }}$
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range

APPLICATIONS

Optical microelectromechanical systems (MEMS)

Optical crosspoint switches

Micropositioning applications using piezoelectric actuators
Level setting in automotive test and measurement

GENERAL DESCRIPTION

The AD5535B is a 32 -channel, 14 -bit denseDAC ${ }^{\circledR}$ with an on-chip high voltage output amplifier. This device is targeted for optical micro-electromechanical systems. The output voltage range is programmable via the REF_IN pin. The output range is 0 V to 50 V when REF_IN $=1 \mathrm{~V}$, and 0 V to 200 V when REF_IN $=4 \mathrm{~V}$. Each amplifier can source $550 \mu \mathrm{~A}$, which is ideal for the deflection and control of optical MEMS mirrors.
The selected digital-to-analog converter (DAC) register is written to via the 3-wire interface. The serial interface operates at clock rates of up to 30 MHz and is compatible with DSP and microcontroller interface standards.

The device is operated with $\mathrm{AV}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{DV}_{\mathrm{CC}}=$ 2.7 V to $5.25 \mathrm{~V}, \mathrm{~V}_{+}=4.75 \mathrm{~V}$ to 5.25 V , and V_{Pp} of up to 225 V . REF_IN is buffered internally on the AD5535B and should be driven from a stable reference source.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Timing Characteristics 5
Absolute Maximum Ratings 6
ESD Caution6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 9
Terminology 11
Functional Description 12
REVISION HISTORY
7/2019—Rev. A to Rev. B
Updated Outline Dimensions 16
Changes to Ordering Guide 16
DAC Section 12
Reset Function 12
Serial Interface 12
Microprocessor Interfacing 12
Applications Information 14
MEMS Mirror Control Application 14
IPC-221-Compliant Board Layout 14
Power Supply Decoupling Recommendations 15
Guidelines for PCB Layout 15
Outline Dimensions 16
Ordering Guide 16
4/2013-Rev. 0 to Rev. A
Change to General Description Section....................................... 1
Changes to DAC Section ... 12
Changes to MEMS Mirror Control Application Section 14

1/2013-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{PP}}=215 \mathrm{~V} ; \mathrm{V}_{+}=5 \mathrm{~V} ; \mathrm{AV}_{\mathrm{CC}}=5.25 \mathrm{~V} ; \mathrm{DV}$ CC $=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{PGND}=\mathrm{AGND}=\mathrm{DGND}=\mathrm{DAC}$-GND $=0 \mathrm{~V} ; \mathrm{REF}$ _IN $=4.096 \mathrm{~V}$; all outputs unloaded. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

Table 1.

Parameter ${ }^{1}$	K Grade ${ }^{2}$			Unit	Test Conditions/Comments
	Min	Typ	Max		
DC PERFORMANCE ${ }^{3}$					
Resolution		14		Bits	
Integral Nonlinearity (INL)		± 0.1		\% of FSR	
Differential Nonlinearity (DNL)	-1	± 0.5	+1	LSB	Guaranteed monotonic
Zero Code Voltage		0.5	1		
Output Offset Error	-1		+1		
Offset Drift		0.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Voltage Gain	49	50	51	V/V	
Gain Temperature Coefficient		5		ppm $/{ }^{\circ} \mathrm{C}$	Due to DAC
		-200		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Due to DAC and amplifier
Channel-to-Channel Gain Match ${ }^{4}$	-5		+5	\%	
OUTPUT CHARACTERISTICS					
Output Voltage Range ${ }^{3}$	1		$\mathrm{V}_{\text {PP }}-1$	V	
Output Impedance		50		Ω	
Resistive Load ${ }^{4}{ }^{5}$	1			$\mathrm{M} \Omega$	
Capacitive Load ${ }^{4}$			200	pF	
Short-Circuit Current		0.55		mA	
DC Crosstalk ${ }^{4}$		3	4	LSB	
DC Power Supply Rejection (PSRR), , Vpp		70		dB	
Long-Term Drift		0.25		LSB	Outputs at midscale, measured over 30 days at $25^{\circ} \mathrm{C}$
AC CHARACTERISTICS ${ }^{4}$					
Settling Time					
$1 / 4$ to $3 / 4$ Scale Step	30	60		$\mu \mathrm{s}$	
		60		$\mu \mathrm{s}$	200 pF load
1 LSB Step		5		$\mu \mathrm{s}$	No load
		5		$\mu \mathrm{s}$	200 pF load
Slew Rate		10		$\mathrm{V} / \mu \mathrm{s}$	No load
		3		V/ $\mu \mathrm{s}$	200 pF load
-3 dB Bandwidth				kHz	
Output Noise Spectral Density		4.5		$\mu \mathrm{V} / \sqrt{ } \mathrm{Hz}$	Measured at 10 kHz
0.1 Hz to 10 Hz Output Noise Voltage		1		$m V p-p$	
Digital-to-Analog Glitch Impulse					1 LSB change around major carry
Positive Transition		15			
Negative Transition		8		nV-sec	
Analog Crosstalk		2.5		$\mu \mathrm{V}$-sec	
Digital Feedthrough		2		nV-sec	
VOLTAGE REFERENCE, REF_IN ${ }^{6}$					$A V_{c c}$ and V_{+}must exceed REF_IN by 1.15 V minimum
Input Voltage Range ${ }^{4}$	1		4.096		
Input Impedance			60	k Ω	

Parameter ${ }^{1}$	K Grade ${ }^{2}$			Unit	Test Conditions/Comments
	Min	Typ	Max		
TEMPERATURE MEASUREMENT DIODE ${ }^{4}$ Peak Inverse Voltage, Piv Forward Diode Drop, V_{F} Forward Diode Current, I_{F} V_{F} Temperature Coefficient, T_{C}		$\begin{aligned} & 0.65 \\ & -2.20 \end{aligned}$	$\begin{aligned} & 5 \\ & 0.8 \\ & 100 \end{aligned}$	V V $\mu \mathrm{A}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$	Cathode to anode $\mathrm{I}_{\mathrm{F}}=100 \mu \mathrm{~A}$, anode to cathode Anode to cathode Anode to cathode
DIGITAL INPUTS ${ }^{4}$ Input Current Input Low Voltage Input High Voltage Input Hysteresis (SCLK and $\overline{\text { SYNC }}$ Only) Input Capacitance	2.0	± 5 200	$\begin{aligned} & \pm 10 \\ & 0.8 \end{aligned}$ 10	$\mu \mathrm{A}$ V V mV pF	
POWER SUPPLY VOLTAGES $V_{\text {pp }}$ V_{+} AVcc DVc.	$\begin{aligned} & (50 \times \\ & \text { REF_IN })+1 \\ & 4.75 \\ & 4.75 \\ & 2.7 \end{aligned}$		$\begin{aligned} & 225 \\ & \\ & 5.25 \\ & 5.25 \\ & 5.25 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	
POWER SUPPLY CURRENTS7 Ipp All Channels at Full-Scale All Channels at Zero-Scale I_{+} Alcc Dlcc		$\begin{aligned} & 50 \\ & 25 \\ & 1.2 \\ & 17.5 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 60 \\ & 35 \\ & 1.7 \\ & 20 \\ & 0.6 \end{aligned}$	$\mu \mathrm{A} /$ channel $\mu \mathrm{A} /$ channel mA mA mA	

${ }^{1}$ See the Terminology section.
${ }^{2} \mathrm{~K}$ Grade temperature range: $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; typical $=+25^{\circ} \mathrm{C}$.
${ }^{3}$ Linear output voltage range: 7 V to $\mathrm{V}_{\mathrm{Pp}}-1 \mathrm{~V}$.
${ }^{4}$ Guaranteed by design and characterization, not production tested.
${ }^{5}$ Ensure that $\mathrm{T}_{\mathrm{J}} \mathrm{max}$ is not exceeded. See the Absolute Maximum Ratings section.
${ }^{6}$ Reference input determines output voltage range. Using a 4.096 V reference (REF198) gives an output voltage range of 2.50 V to 200 V . The output range is programmable via the reference input. The full-scale output range is programmable from 50 V to 200 V . The linear output voltage range is restricted from 7 V to $\mathrm{V}_{\mathrm{Pp}}-1 \mathrm{~V}$.
${ }^{7}$ Outputs unloaded.

TIMING CHARACTERISTICS

$\mathrm{V}_{\mathrm{PP}}=210 \mathrm{~V} ; \mathrm{V}_{+}=+5 \mathrm{~V} ; \mathrm{AV}_{\mathrm{CC}}=5.25 \mathrm{~V} ; \mathrm{DV}$ CC $=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{DAC}_{-} \mathrm{GND}=0 \mathrm{~V} ; \mathrm{REF}_{-} \mathrm{IN}=4.096 \mathrm{~V}$. All specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

Table 2.

Parameter ${ }^{1,2,3}$	A Grade	Unit	Test Conditions/Comments
fupdate	1.2	MHz max	Channel update rate
$\mathrm{f}_{\text {CLIIN }}$	30	MHz max	SCLK frequency
t_{1}	13	ns min	SCLK high pulse width
t_{2}	13	ns min	SCLK low pulse width
t_{3}	15	ns min	$\overline{\text { SYNC }}$ falling edge to SCLK falling edge setup time
t_{4}	50	ns min	$\overline{\text { SYNC }}$ low time
t_{5}	10	ns min	$\overline{\text { SYNC }}$ high time
t_{6}	10	ns min	Din setup time
t_{7}	5	ns min	Din hold time
t_{8}	200	ns min	$19^{\text {th }}$ SCLK falling edge to $\overline{\text { SYNC }}$ falling edge for next write
t9	20	ns min	$\overline{\mathrm{RESET}}$ pulse width

[^0]

Figure 2. Serial Interface Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
$\mathrm{V}_{\text {Pp }}$ to AGND	0.3 V to 240 V
V_{+}to AGND	-0.3 V to +7 V
AVcc to AGND, DAC_GND	-0.3 V to +7 V
DV $\mathrm{cc}^{\text {to }}$ DGND	-0.3 V to +7V
Digital Inputs to DGND	-0.3 V to DVCC +0.3 V
REF_IN to AGND, DAC_GND	-0.3 V to AVCC +0.3 V
Vout0 to Vout31 to AGND	-0.3 V to $\mathrm{V}_{\mathrm{PP}}+0.3 \mathrm{~V}$
ANODE/CATHODE to AGND, DAC_GND	-0.3 V to +7 V
AGND to DGND	-0.3 V to +0.3 V
Operating Temperature Range Industrial	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ($\mathrm{T}_{\text {max }}$ m	$150^{\circ} \mathrm{C}$
124-Lead CSP_BGA Package, θ_{JA} Thermal Impedance	$40^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature	JEDEC industry standard
ESD	
Human Body Model	2.5 kV
Machine Model	250 V
Field Induced Charged Device Model	400 V

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Transient currents of up to 100 mA do not cause SCR latch-up.
ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Assignments

Pin No.	Mnemonic
A1	NC
A2	Vout1
A4	Vout7
A6	Vout11
A8	Vout16
A10	Vout20
A12	Vout25
A14	NC
B1	Vout0
B3	Vout4
B5	Vout9
B7	Vout13
B9	Vout17
B11	Vout21
B13	Vout26
C2	Vout3
C12	Vout22
C14	Vout29
D1	Vout2
D13	Vout23
E2	Vout5
E4	Vout8
E6	Vout12
E8	Vout15
E10	Vout19
E12	Vout24
E14	Vout31
F3	Vout6
F5	Vout10
F7	Vout14
F9	Vout18
F13	Vout30
G14	Vout28

Pin No.	Mnemonic
H1	$\mathrm{V}_{\text {PP }}$
H2	$V_{\text {PP }}$
H4 to H11	AGND
H13	Vout27
J3 to J12	AGND
K1	V_{+}
K2	V_{+}
K3 to K14	AGND
L1	NC
L2	NC
L3 to L13	AGND
L14	DAC_GND
M1 to M12	AGND
M13	AV ${ }_{\text {cc }}$
M14	AV $\mathrm{cc}^{\text {c }}$
N1	PGND
N2	PGND
N3	CATHODE
N4	ANODE
N5 to N14	AGND
P1	NC
P2	REF_IN
P3	DAC_GND
P4	$\overline{\text { RESET }}$
P5	DVcc
P6	DGND
P7	TEST
P8	Din
P9	SCLK
P10	$\overline{\text { SYNC }}$
P11 to P13	AGND
P14	NC

Table 5. Pin Function Descriptions

Mnemonic	Description
AGND	Analog GND Pins.
$\mathrm{AV}_{\text {cc }}$	Analog Supply Pins. Voltage range from 4.75 V to 5.25 V .
$V_{\text {PP }}$	Output Amplifier High Voltage Supply. Voltage range from (REF_IN $\times 50$) + 1 V to 225 V .
V_{+}	V_{+}Amplifier Supply Pins. Voltage range from 4.75 V to 5.25 V .
PGND	Output Amplifier Ground Reference Pins.
DGND	Digital GND Pins.
DVcc	Digital Supply Pins. Voltage range from 2.7 V to 5.25 V.
DAC_GND	Reference GND Supply for All DACs.
REF_IN	Reference Voltage for Channel 0 to Channel 31. Reference input range is 1 V to 4 V and can be used to program the fullscale output voltage from 50 V to 200 V .
Vout0 to Vout31	Analog Output Voltages from the 32 Channels.
ANODE	Anode of Internal Diode for Diode Temperature Measurement.
CATHODE	Cathode of Internal Diode for Diode Temperature Measurement.
$\overline{\text { SYNC }}$	Active Low Input. This is the frame synchronization signal for the serial interface. While $\overline{\text { SYNC }}$ is low, data is transferred in upon the falling edge of SCLK.
SCLK	Serial Clock Input. Data is clocked into the shift register upon the falling edge of SCLK. The pin operates at clock speeds of up to 30 MHz . Internal pull-up device on logic input; therefore, it can be left floating and defaults to a logic high condition.
$\mathrm{Din}_{\text {IN }}$	Serial Data Input. Data must be valid upon the falling edge of SCLK.
TEST	For normal operation, tie this pin low.
$\overline{\text { RESET }}$	Active Low Input. This pin can also be used to reset the complete device to its power-on reset conditions. Zero code is loaded to the DACs.
NC	No Connect. Do not connect to these pins.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Integral Nonlinearity (INL) with Full-Scale Range $=50 \mathrm{~V}$

Figure 5. Differential Nonlinearity (DNL) with Full-Scale Range $=50 \mathrm{~V}$

Figure 6. INL with Full-Scale Range $=200 \mathrm{~V}$

Figure 7. DNL with Full-Scale Range $=200 \mathrm{~V}$

Figure 8. Short-Circuit Current Limit Timing

Figure 9. Worst-Case Adjacent Channel Crosstalk

Figure 10. Output Amplifier Source and Sink Capability

Figure 11. Offset Error vs. Temperature

Figure 12. Gain Error vs. Temperature

Figure 13. Cumulative DC Crosstalk Effects on a Single-Channel Output, Switching All Other Channels in Sequence

Figure 14. Settling Time vs. Capacitive Load

TERMINOLOGY

Integral Nonlinearity (INL)
A measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is expressed as a percentage of full-scale range.

Differential Nonlinearity (DNL)

The difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified DNL of ± 1 LSB maximum ensures monotonicity.

Zero Code Voltage

A measure of the output voltage present at the device output with all 0 s loaded to the DAC. It includes the offset of the DAC and the output amplifier and is expressed in V.

Offset Error

Calculated by taking two points in the linear region of the transfer function, drawing a line through these points, and extrapolating back to the y-axis. It is expressed in V .

Voltage Gain

Calculated from the change in output voltage for a change in code, multiplied by 16,384 , and divided by the REF_IN voltage. This is calculated between two points in the linear section of the transfer function.

Gain Error

A measure of the output error with all 1s loaded to the DAC, and the difference between the ideal and actual analog output range. Ideally, the output should be $50 \times$ REF_IN. It is expressed as a percentage of full-scale range.

DC Power Supply Rejection Ratio (PSRR)

A measure of the change in analog output for a change in $V_{P P}$ supply voltage. It is expressed in dB , and V_{PP} is varied $\pm 5 \%$.

DC Crosstalk

The dc change in the output level of one DAC at midscale in response to a full-scale code change (all 0 s to all 1 s and vice versa) and the output change of all other DACs. It is expressed in LSB.

Output Voltage Settling Time

The time taken from when the last data bit is clocked into the DAC until the output has settled to within ± 0.5 LSB of its final value. Measured for a step change of $1 / 4$ to $3 / 4$ full scale.

Digital-to-Analog Glitch Impulse

The area of the glitch injected into the analog output when the code in the DAC register changes state. It is specified as the area of the glitch in nV -sec when the digital code is changed by 1 LSB at the major carry transition ($011 \ldots 11$ to $100 \ldots 00$ or $100 \ldots 00$ to $011 \ldots 11$).

Analog Crosstalk

The area of the glitch transferred to the output (Vout) of one DAC due to a full-scale change in the output ($\mathrm{V}_{\text {out }}$) of another DAC. The area of the glitch is expressed in nV -sec.

Digital Feedthrough

A measure of the impulse injected into the analog outputs from the digital control inputs when the part is not being written to (SYNC is high). It is specified in nV-sec and measured with a worst-case change on the digital input pins, for example, from all 0 s to all 1 s and vice versa.

Output Noise Spectral Density

A measure of internally generated random noise. Random noise is characterized as a spectral density (voltage per $\sqrt{ } \mathrm{Hz}$). It is measured by loading all DACs to midscale and measuring noise at the output. It is measured in $\mu \mathrm{V} / \sqrt{ } \mathrm{Hz}$.

FUNCTIONAL DESCRIPTION

The AD5535B consists of a 32-channel, 14-bit DAC with 200 V high voltage amplifiers in a single $15 \mathrm{~mm} \times 15 \mathrm{~mm}$ CSP_BGA package. The output voltage range is programmable via the REF_IN pin. The output range is 0 V to 50 V when REF_IN = 1 V , and 0 V to 200 V when REF_IN $=4 \mathrm{~V}$. Communication to the device is through a serial interface operating at clock rates of up to 30 MHz , which is compatible with DSP and microcontroller interface standards. A 5-bit address and a 14-bit data-word are loaded into the AD5535B input register via the serial interface. The channel address is decoded, and the data-word is converted into an analog output voltage for this channel.
At power-on, all the DAC registers are loaded with 0s.

DAC SECTION

The architecture of each DAC channel consists of a resistor string DAC, followed by an output buffer amplifier operating with a nominal gain of 50 . The voltage at the REF_IN pin provides the reference voltage for the corresponding DAC. The input coding to the DAC is straight binary, and the ideal DAC output voltage is given by

$$
V_{\text {OUT }}=\frac{50 \times V_{R E F_{-} I N} \times D}{2^{14}}
$$

where D is the decimal equivalent (0 to 16,383) of the binary code, which is loaded to the DAC register.
The output buffer amplifier is specified to drive a load of $1 \mathrm{M} \Omega$ and 200 pF . The linear output voltage range for the output amplifier is from 7 V to $\mathrm{V}_{\mathrm{Pp}}-1 \mathrm{~V}$. The amplifier output bandwidth is typically 30 kHz , and is capable of sourcing $550 \mu \mathrm{~A}$ and sinking 2.8 mA . Settling time for a $1 / 4$ to $3 / 4$ full-scale step change is typically 60μ s with a load of up to 200 pF .

RESET FUNCTION

The reset function on the AD5535B can be used to reset all nodes on the device to their power-on reset condition. All the DACs are loaded with 0 s , and all registers are cleared. Take the $\overline{\text { RESET }}$ pin low to implement the reset function.

SERIAL INTERFACE

The serial interface is controlled by the three following pins:

- $\overline{\text { SYNC, which is the frame synchronization pin for the serial }}$ interface.
- SCLK, which is the serial clock input that operates at clock speeds of up to 30 MHz .
- $\mathrm{D}_{\text {IN }}$, which is the serial data input and data must be valid upon the falling edge of SCLK.
To update a single DAC channel, a 19-bit data-word is written to the AD5535B input register.

A4 to AO Bits

The A4 to A0 bits can address any one of the 32 channels. A4 is the MSB of the address, while A0 is the LSB.

DB13 to DB0 Bits

The DB13 to DB0 bits are used to write a 14-bit data-word into the addressed DAC register.

Figure 2 is the timing diagram for a serial write to the AD5535B. The serial interface works with both a continuous and a discontinuous serial clock. The first falling edge of $\overline{\text { SYNC }}$ resets the serial clock counter to ensure that the correct number of bits are shifted into the serial shift register. Any further edges on SYNC are ignored until the correct number of bits are shifted in. After 19 bits are shifted in, the SCLK is ignored. For another serial transfer to take place, the counter must be reset by the falling edge of SYNC. The user must allow 200 ns (minimum) between successive writes.
MSB

LSB					
A4	A3	A2	A1	A0	DB13 TO DB0

Figure 15. Serial Data Format

MICROPROCESSOR INTERFACING

AD5535B-to-ADSP-BF527 Interface

The Blackfin ${ }^{\bullet}$ DSP is easily interfaced to the AD5535B without the need for extra logic. A data transfer is initiated by writing a word to the TX register after SPORT is enabled. In a write sequence, data is clocked out on each rising edge of the serial clock of the DSP and clocked into the AD5535B on the falling edge of its SCLK. The SPORT can be configured to transmit 19 SCLKs while TFS is low. Figure 16 shows the connection diagram.

Figure 16. AD5535B-to-ADSP-BF527 Interface

AD5535B-to-MC68HC1 1 Interface

The serial peripheral interface (SPI) on the MC68HC11 is configured for master mode ($\mathrm{MSTR}=1$), clock polarity bit (CPOL) $=0$, and clock phase bit $(\mathrm{CPHA})=1$. The SPI is configured by writing to the SPI control register (SPCR). SCK of the MC68HC11 drives the SCLK of the AD5535B and the MOSI output drives the serial data line ($\mathrm{D}_{\text {IN }}$) of the AD5535B. The $\overline{\text { SYNC }}$ signal is derived from a port line (PC7). When data is being transmitted to the AD5535B, the $\overline{\text { SYNC }}$ pin is taken low (PC7).

Data appearing on the MOSI output is valid on the falling edge of SCK. The MC68HC11 transfers only eight bits of data during each serial transfer operation; therefore, three consecutive write operations are necessary to transmit 19 bits of data. Data is transmitted MSB first. It is important to left justify the data in the SPDR register so that the first 19 bits transmitted contain valid data. PC7 must be pulled low to start a transfer. PC7 is then taken high and pulled low again before any further write cycles can take place. Figure 17 shows the connection diagram.

*ADDITIONAL PINS OMITTED FOR CLARITY.
Figure 17. AD5535B-to-MC68HC11 Interface

AD5535B-to-PIC16C6x/7x Interface

The PIC16C6x/7x synchronous serial port (SSP) is configured as an SPI master with the clock polarity bit $=0$. This is done by writing to the synchronous serial port control register (SSPCON). In this example, I/O port RA1 is being used to pulse $\overline{\text { SYNC }}$ and to enable the serial port of the AD5535B. This microcontroller transfers only eight bits of data during each serial transfer
operation; therefore, three consecutive write operations are necessary to transmit 19 bits of data. Data is transmitted MSB first. It is important to left justify the data in the SPDR register so that the first 19 bits transmitted contain valid data. RA1 must be pulled low to start a transfer. RA1 must then be brought high and pulled low again before any further write cycles can take place. Figure 18 shows the connection diagram.

*ADDITIONAL PINS OMITTED FOR CLARITY.
Figure 18. AD5535B-to-PIC16C6x/7x Interface

AD5535B-to-8051 Interface

The AD5535B requires a clock synchronized to the serial data. Therefore, the 8051 serial interface must operate in Mode 0 . In this mode, serial data exits the 8051 through RxD, and a shift clock is output on TxD. The $\overline{\text { SYNC }}$ signal is derived from a port line (P1.1). Figure 19 shows how the 8051 is connected to the AD5535B. Because the AD5535B shifts data out upon the rising edge of the shift clock and latches data in upon the falling edge, the shift clock must be inverted. Note that the AD5535B also requires its data to be MSB first. Because the 8051 outputs LSB first, the transmit routine must take this into account.

Figure 19. AD5535B-to-8051 Interface

APPLICATIONS INFORMATION

MEMS MIRROR CONTROL APPLICATION

The AD5535B is targeted to all optical switching control systems based on MEMS technology. The AD5535B is a 32-channel, 14 -bit DAC with integrated high voltage amplifiers. The output amplifiers are capable of generating an output range of 0 V to 200 V when using a 4 V reference. The full-scale output voltage is programmable from 50 V to 200 V using reference voltages from 1 V to 4 V . Each amplifier can output $550 \mu \mathrm{~A}$ and directly drives the control actuators, which determine the position of MEMS mirrors in optical switch applications.

The AD5535B is generally used in a closed-loop feedback system, as shown in Figure 20, with a high resolution ADC and DSP. The exact position of each mirror is measured using capacitive sensors. The sensor outputs are multiplexed using an ADG739 4 -to-1 multiplexer to an 8-channel, 14-bit ADC (AD7856). An alternative solution is to multiplex using a 32 -to-1 multiplexer (ADG732) into a single-channel ADC (AD7671). The control loop is driven by an ADSP-21065L, a 32-bit SHARC ${ }^{\circledR}$ DSP with an SPI-compatible SPORT interface. With 14-bit monotonic behavior and a 0 V to 200 V output range, coupled with its fast serial interface, the AD5535B is ideally suited for controlling a cluster of MEMS-based mirrors.

Figure 20. AD5535B in a MEMS-Based Optical Switch

IPC-221-COMPLIANT BOARD LAYOUT

The diagram in Figure 21 is a typical 2-layer printed circuit board (PCB) layout for the AD5535B that complies with the specifications outlined in IPC-221. Do not connect to the four corner balls labeled as original no connects. Connect balls labeled as additional no connects to AGND.

The routing shown in Figure 21 shows the feasibility of connecting to the high voltage balls while complying with the spacing requirements of IPC-221. Figure 21 also shows the physical distances that are available.

Figure 21. Layout Guidelines to Comply with IPC-221

POWER SUPPLY DECOUPLING RECOMMENDATIONS

On the AD5535B, it is recommended to tie all grounds together as close to the device as possible. If the number of supplies must be reduced, bring all supplies back separately and make a provision on the board via a link option to drive the $A V_{C C}$ and V_{+}pins from the same supply. Decouple all power supplies adequately with $10 \mu \mathrm{~F}$ tantalum capacitors and $0.1 \mu \mathrm{~F}$ ceramic capacitors.

GUIDELINES FOR PCB LAYOUT

Design printed circuit boards such that the analog and digital sections are separated and confined to the designated analog and digital sections of the board. This facilitates the use of ground planes that can be separated easily. A minimum etch technique is generally the best for ground planes because it optimizes shielding of sensitive signal lines. Join digital and analog ground planes in one place only, at the AGND and DGND pins of the high resolution converter. To isolate the high frequency bus of the processor from the bus of the high resolution converters, buffer or latch data and address buses on the board. These act as a Faraday shield and increase the signal-to-noise performance of the converters by reducing the amount of high frequency digital coupling. Avoid running digital lines under the device because they couple noise onto the die. Allow the ground plane to run under the IC to avoid noise coupling.
Use as large a trace as possible for the supply lines of the device to provide low impedance paths and reduce the effects of glitches on the power supply line. Shield components, such as clocks with fast-switching signals, with digital ground to avoid radiating noise to other sections of the board. Never run clock signals near the analog inputs of the device. Avoid crossovers of digital and analog signals. Keep traces for analog inputs as wide and short as possible and shield with analog ground if possible. Run traces on opposite sides of the 2-layer PCB at right angles to each other to reduce the effects of feedthrough through the board.

A microstrip technique is by far the best, but it is not always possible to use with a double-sided board. In this technique, the component side of the board is dedicated to ground planes, and signals are placed on the solder side. Multilayer printed circuit boards with dedicated ground, power, and tracking layers offer the optimum solution in terms of obtaining analog performance, but at increased manufacturing costs.

Good decoupling is vitally important when using high resolution converters. Decouple all analog supplies with $10 \mu \mathrm{~F}$ tantalum capacitors in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitors to analog ground. To achieve the best results from the decoupling components, place them as close to the device as possible, ideally right up against the IC or the IC socket. The main aim of a bypassing element is to maximize the charge stored in the bypass loop while simultaneously minimizing the inductance of this loop. Inductance in the loop acts as an impedance to high frequency transients and results in power supply spiking. By keeping the decoupling as close to the device as possible, the loop area is kept as small as possible, thereby reducing the possibility of power supply spikes. Decouple digital supplies of high resolution converters with $10 \mu \mathrm{~F}$ tantalum capacitors and $0.1 \mu \mathrm{~F}$ ceramic capacitors to the digital ground plane. Decouple the V_{+}supply with a $10 \mu \mathrm{~F}$ tantalum capacitor and a $0.1 \mu \mathrm{~F}$ ceramic capacitor to AGND.

Decouple all logic chips with $0.1 \mu \mathrm{~F}$ ceramic capacitors to digital ground to decouple high frequency effects associated with digital circuitry.

OUTLINE DIMENSIONS

COMPLIANT WITH JEDEC STANDARDS MO-192-DAE-1
Figure 22. 124-Lead Chip Scale Package Ball Grid Array [CSP_BGA] (BC-124-5)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1,2	Function	Output Voltage Span	Temperature Range	Package Description	Package Option
AD5535BKBCZ	32 DACs	0 V to 200 V maximum	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$124-$-Lead Chip Scale Package Ball Grid Array [CSP_BGA] Evaluation Board	BC-124-5
EVAL-AD5535BSDZ					

${ }^{1} Z=$ RoHS Compliant Part.
${ }^{2}$ USB interface board, EVAL-SDP-CS1Z, must be ordered separately when ordering the EVAL-AD5535BSDZ.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

[^0]: ${ }^{1}$ See Figure 2.
 ${ }^{2}$ Guaranteed by design and characterization, not production tested.
 ${ }^{3}$ All input signals are specified with $\operatorname{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{DV}_{c c}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathbb{L}}+\mathrm{V}_{\mathbb{H}}\right) / 2$.

