Evaluation Board for the AD5677R 16-Bit, 16-Channel, Voltage Output DAC

FEATURES

Full featured evaluation board for the AD5677R
Compatible with the AD5673R
Various link options
PC control in conjunction with the Analog Devices, Inc., SDP-B board

EVALUATION KIT CONTENTS

EVAL-AD5677RSDZ
HARDWARE REQUIRED
EVAL-SDP-CB1Z (SDP-B) board, must be purchased separately

SOFTWARE REQUIRED

Analysis | Control | Evaluation software, available for download from the EVAL-AD5679RSDZ product page

GENERAL DESCRIPTION

This user guide describes the operation of the EVALAD5677RSDZ for the AD5677R 16-bit, 16-channel, voltage output, digital-to-analog converter (DAC). The EVALAD5677RSDZ is also compatible with the AD5673R.

The EVAL-AD5677RSDZ allows users to quickly prototype AD5673R/AD5677R circuits and reduce design time. The

AD5673R/AD5677R operates from a single 2.7 V to 5.5 V supply range. The AD5673R/AD5677R incorporates an internal 2.5 V reference to provide an output voltage of 2.5 V or 5 V . The EVAL-AD5677RSDZ also incorporates an additional on-board voltage reference.
The EVAL-AD5677RSDZ interfaces to the USB port of a PC via a system demonstration platform (SDP-B) board. The Analysis | Control | Evaluation (ACE) software is available for download from the EVAL-AD5677RSDZ product page. Use this software with the evaluation board to program the AD5673R/AD5677R. A peripheral module interface (PMOD) connection is also available to allow the connection of microcontrollers to the evaluation board without the SDP-B board. When a microcontroller is used through the PMOD connection, the SDP-B board must be disconnected, and the user is unable to operate the ACE software.
The EVAL-AD5677RSDZ is compatible with any Analog Devices SDP-B board, which can be purchased separately. A typical connection between the EVAL-AD5677RSDZ and the SDP-B controller board is shown in Figure 1.

For full details, see the AD5673R/AD5677R data sheet, which must be used in conjunction with this user guide when using the EVAL-AD5677RSDZ.

EVALUATION BOARD PHOTOGRAPH

Figure 1.

TABLE OF CONTENTS

Features 1
Evaluation Kit Contents 1
Hardware Required 1
Software Required 1
General Description 1
Evaluation Board Photograph 1
Revision History 2
Evaluation Board Hardware 3
Power Supplies 3
Link Options. 3
On-Board Connectors 3
Evaluation Board Software Quick Start Procedures 4
Installing the Software 4
Initial Setup. 4
Functional Block Diagram and Description 5
Memory Map 6
Evaluation Board Schematics and Artwork. 7
Ordering Information 12
Bill of Materials 12

REVISION HISTORY

3/2020—Revision 0: Initial Version

EVALUATION BOARD HARDWARE POWER SUPPLIES

The EVAL-AD5677RSDZ provides on-board 3.3 V and 5 V regulators powered through the USB supply or from an external source. If a different supply is required, or if the evaluation board is controlled through the PMOD connector, an external supply must be provided by the external supply voltage (EXTSUP) connector. See Table 1 for more information.
Each supply is decoupled to ground with $10 \mu \mathrm{~F}$ tantalum and $0.1 \mu \mathrm{~F}$ ceramic capacitors.

LINK OPTIONS

A number of link options are incorporated on the EVALAD5679RSDZ and must be set for the required operating conditions before using the board. The functions of these link options are described in Table 2.

ON-BOARD CONNECTORS

Table 3 shows the connectors on the EVAL-AD5677RSDZ.

Table 1. Power Supply Connectors

Connector Label	External Voltage Supplies Description
EXTSUP, Pin 1	External analog power supply from 2.7 V to 5.5 V.
EXTSUP, Pin 2	Analog ground.
EXT_REF	External voltage reference. The AD5673R/AD5677R requires an external voltage reference.

Table 2. Link Functions

Link	Description
PWR_SEL	This link selects the primary analog voltage source for the 3.3 V output and 5 V output for VDD_SEL. There are two options, as follows: The USB option selects the USB supply from Pin 5 of the 120-pin connector of the SDP-B board. The EXT option selects an EXTSUP connector. The voltage applied to EXTSUP must be between 2.7 V and 5.5 V .
VDD_SEL	This link selects the DAC analog voltage source. There are three options, as follows: The 5V0 option selects the on-board 5 V source from the LTC3536. The 3V3 option selects the on-board 3.3 V source from the ADM7160. The EXT option selects an EXTSUP connector. The voltage applied to EXTSUP must be between 2.7 V and 5.5 V .
GAIN_SEL	This link selects the gain setting for the DAC. There are three options, as follows: The gain option allows the ACE plug-in to control the gain setting of the device. The high option selects gain $=2$. The low option selects gain $=1$.
REFSUP_SEL	This link selects the voltage supply for the on-board voltage reference, ADR4525. There are three options, as follows: The 5V0 option selects the on-board 5 V source from the LTC3536. The 3 V 3 option selects the on-board 3.3 V source from the ADM7160. The EXT option selects an EXTSUP connector. Voltage applied to EXTSUP must be between 2.7 V and 5.5 V .
REF	This link selects the external reference voltage for the DAC. The internal reference must be disabled first before using this feature (refer to the AD5677R data sheet). There are two options, as follows: The 2 V 5 option selects the on-board 2.5 V reference voltage from the ADR4525. The EXT option selects an EXT_REF connector. The voltage applied to EXT_REF must be between 1 V and $\mathrm{V}_{\text {DD }}$ if gain $=$ 1 , and between 1 V and $\mathrm{V}_{\mathrm{DD}} / 2$ if gain $=2$.

Table 3. On-Board Connectors

Connector	Function
EXTSUP	External analog power supply from 2.7 V to 5.5 V.
EXT_REF	External voltage reference.
P2	DAC outputs from Vout0 to Vout7.
P3	DAC outputs from Vout8 to Vout15.

EVALUATION BOARD SOFTWARE QUICK START PROCEDURES

INSTALLING THE SOFTWARE

The EVAL-AD5677RSDZ uses the ACE evaluation software, which allows the evaluation and control of multiple evaluation systems.
The ACE installer installs the necessary SDP-B drivers and the Microsoft ${ }^{\bullet}$.NET Framework 4 by default. The ACE software is available for download from the EVAL-AD5677RSDZ product page. This software must be installed before connecting the SDP-B board to the USB port of the PC to ensure that the SDP-B board is recognized and connected to the PC. For full instructions on how to install and use this software, see the ACE software page on the Analog Devices website.
After installation completes, the EVAL-AD5677RSDZ plug-in appears when the ACE software is opened.

INITIAL SETUP

To set up the evaluation board, take the following steps:

1. Connect the evaluation board to the SDP-B board. Then, connect the USB cable between the SDP-B board and the PC.
2. Run the ACE application. The EVAL-AD5677RSDZ plug-ins appear in the attached hardware section of the Start tab.
3. Double-click the board plug-in to open the board view shown in Figure 2.
4. Double-click the AD5677R chip to access the chip block diagram. This view provides a basic representation of the functionality of the board. The main functions of the board are labeled in Figure 3.

Figure 2. Board View of the EVAL-AD5677RSDZ

Figure 3. Chip Block Diagram of the AD5677R

FUNCTIONAL BLOCK DIAGRAM AND DESCRIPTION

The EVAL-AD5677RSDZ software is organized to appear similar to the functional block diagram shown in the AD5673R/ AD5677R data sheet, which simplifies correlating the functions on the EVAL-AD5677RSDZ with the description in the AD5673R/AD5677R data sheet.

For a full description of each block, register, and the corresponding settings, see the AD5673R/AD5677R data sheet.
Some of the blocks and their functions are described in this section as they pertain to the evaluation board. The full screen block diagram is shown in Figure 4. Table 4 describes the functionality of each block.

Figure 4. AD5677R Block Diagram with Labels
Table 4. Block Diagram Functions (See Figure 4)

Label	Button/Function Name	Function
A	CONFIGURATION wizard	Used to set the initial configuration for the board. Select the reference gain case from the Output Gain dropdown menu. A gain of 1 is the default. After setting up the initial configuration, click Apply to apply the values. These settings can be modified at any stage while evaluating the board.
B	LDAC and RESET (GPIO buttons)	Act as external GPIO pulses to the $\overline{\text { LDAC }}$ pin and $\overline{\text { RESET pin. The LDAC button pushes data from both }}$ input registers (Label D) to the DAC registers (Label E). The RESET button clears all data from input registers and DAC registers. These buttons are live and there is no need to click Apply Changes (Label J).
C	Select a Command	Command option dropdown menu selects how the data being transferred to the device affects the input registers and DAC registers. After a data value is entered in an input register (Label D), this menu determines if the data is transferred to the input register only, or to the channel input register (Label D) and the channel DAC register (Label E).
D	Input Register 0 through Input Register 15	16-bit data word to be transferred to the device. Click Apply Changes (Label J) to transfer this 16-bit data word to the device.
E	DAC Register 0 through DAC Register 15	Displays the value that is currently present in the DAC register on the device. Update the DAC registers by selecting the appropriate command option or by toggling LDAC (Label B). DAC Register contents may vary depending on the device, refer to the AD5673R/AD5677R data sheet.
F	Software RESET	Returns the evaluation board and software to default values. This button is live. Therefore, there is no need to click Apply Changes.
G	Load DAC	Users can individually control which channel loads the values from the input registers to the DAC register.

Label	Button/Function Name	Function
\mathbf{I}	Internal Reference	Select Enable from this setting to enable the on-chip reference for the evaluation board. If Disable is selected, an external reference must be applied. This control is only available on the AD5677R/AD5673R.
\mathbf{J}	Apply Changes	Applies all modified values to the device. Note that if an evaluation board is not connected, values entered in the input registers are not transferred to the DAC registers.

MEMORY MAP

All registers are fully accessible from the AD5677R Memory Map tab, shown in Figure 5. This tab allows registers to be edited at the bit level. The bits shaded in dark gray are read only bits and cannot be accessed from the ACE software. All other bits are toggled.

Clicking the Apply Changes button transfers data to the device. All changes made in the memory map tab correspond to the block diagram. For example, if the internal register bit is enabled, it displays as enabled on the block diagram. Any bits or registers shown in bold in the memory map tab are modified values that have not been transferred to the evaluation board (see Figure 6). Click Apply Changes to transfer the data to the evaluation board.

Figure 6. AD5677R Memory Map with Unapplied Changes in the DACO_Input Register

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 7. EVAL-AD5677RSDZ Schematic, SDP, Arduino ${ }^{\circledR}$-Compatible, PMOD Connectors

Figure 8. EVAL-AD5677RSDZ Schematic, Main Circuit

DAC OUTPUT INTERFACE

Figure 10. EVAL-AD5677RSDZ Top Side Component Placement

Figure 11. EVAL-AD5677RSDZ Top Side Routing

Figure 12. EVAL-AD5677RSDZ Bottom Side Component Placement

Figure 13. EVAL-AD5677RSDZ Bottom Side Routing

UG-1766

ORDERING INFORMATION

BILL OF MATERIALS

Table 5.

Qty	Reference Designator	Description	Supplier/Part Number ${ }^{1,2}$
4	C1, C6, C18, C25	Ceramic capacitors, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 0402$	GRM155R71C104KA88D
2	C11, C12	Ceramic capacitors, $4.7 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$, 0805	C2012X7R1A475M085AC
2	C2, C4	Ceramic capacitors, $10 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 0603$	GRM188R61A106KE69D
1	C21	Ceramic capacitor, $68 \mathrm{pF}, 50 \mathrm{~V}, \mathrm{NPO}, 0402$	GCM1555C1H680JA16D
1	C22	Ceramic capacitor, $15 \mathrm{pF}, 50 \mathrm{~V}, \mathrm{C} 0 \mathrm{G}, 0402$	CGA2B2C0G1H150J050BA
1	C23	Ceramic capacitor, $22 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1206$	CL31A226KAHNNNE
1	C3	Tantalum capacitor, $10 \mu \mathrm{~F}, 16 \mathrm{~V}, 1411$	TAJB106K016RNJ
2	C8, C33	Ceramic capacitors, $1 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 0603$	CL10B105KP8NNNC
1	C34	Ceramic capacitors, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 0603$	GRT188R61E106ME13D
1	C35	Ceramic capacitors, 0.1 FF, $25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 0402$	TMK105BJ104KV-F
1	C36	Ceramic capacitors, $1 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 0402$	GRM155R61E105MA12D
1	C5	Ceramic capacitor, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 0805$	GRM21BR61E106KA73L
1	EXTSUP	Terminal block, 5.08 mm pitch	OSTTC022162
1	L1	Inductor, $4.7 \mu \mathrm{H}, 5 \mathrm{~A}, 57.4 \mathrm{~m} \Omega$ direct current resistance (DCR)	XFL4020-472MEB
1	PWR_SEL	3-pin male header, 2.54 mm pitch	M20-9990345
3	GAIN_SEL,REFSUP_SEL,VDD_SEL	6-pin male headers, 2.54 mm pitch	TSW-103-08-G-D
2	P2, P3	16-pin male headers, 2.54 mm pitch	67996-416HLF
1	R13	Resistor, SMD, $0 \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0603$, thick film	CRCW0603000ZRT1
8	R4, R8, R14, R16, R41, R42, R43, R44	Resistors, SMD, 0 , , 1/16 W, 0603, thick film	MC0603WG00000T5E-TC
2	R2, R3	Resistors, SMD, $100 \mathrm{k} \Omega, 5 \%, 1 / 10 \mathrm{~W}, 0603$, thick film	RC0603JR-07100KL
1	R35	Resistor, SMD, $100 \mathrm{k} \Omega, 1 \%, 1 / 5 \mathrm{~W}, 0402$, thick film	ERJ-PA2F1003X
2	R36, R47	Resistors, SMD, $150 \mathrm{k} \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0402$, thick film	ERJ-2RKF1503X
1	R40	Resistor, SMD, 0 , , 1/10 W, 0805, thick film	MC 0.1W 0805 OR
1	R45	Resistor, SMD, $21.5 \mathrm{k} \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0402$, thick film	ERJ-2RKF2152X
1	R46	Resistor, SMD, 1.1 M $2,1 \%, 1 / 16 \mathrm{~W}, 0402$, thick film	AC0402FR-071M1L
1	REF	3-pin male header, 2.54 mm pitch	YMC03SAAN
1	SDP	SDP connector	FX8-120S-SV(21)
1	TP1	Test point, black	20-2137
1	TP2	Test point, red	20-313137
1	EXT_REF	Subminiature Version B (SMB) connector	1-1337482-0
1	U1	$32 \mathrm{k} \Omega, I^{2} \mathrm{C}$ electronically erasable programmable read-only memory (EEPROM)	24LC32A-I/ST
1	U2	1 A low noise, buck-boost dc-to-dc converter	LTC3536EDD\#PBF
1	U3	16-channel, 16-Bit, nanoDAC+	AD5677RBCPZ-1
1	U4	Ultralow noise, 200 mA linear regulator	ADM7160ACPZN3.3-R7
1	U5	Ultralow noise, high accuracy voltage reference	ADR4525BRZ

[^0]
NOTES

${ }^{2} C$ refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

 expressly disclaimed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: ${ }^{1}$ FEC refers to Farnell Electronic Component Distributors.
 ${ }^{2}$ Generic indicates that any device with the specified value, size, and rating can be used.

