Data Sheet

FEATURES

Single 18 -bit DAC, ± 0.5 LSB INL
$7.5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ noise spectral density
0.05 LSB long-term linearity stability
<0.05 ppm/ ${ }^{\circ}$ C temperature drift
$1 \mu \mathrm{~s}$ settling time
1.4 nV -sec glitch impulse

Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
20-lead TSSOP package
Wide power supply range of up to $\pm 16.5 \mathrm{~V}$
35 MHz Schmitt triggered digital interface
1.8 V compatible digital interface

APPLICATIONS

Medical instrumentation
Test and measurement
Industrial control
Scientific and aerospace instrumentation
Data acquisition systems
Digital gain and offset adjustment

Power supply control

GENERAL DESCRIPTION

The AD5781 ${ }^{1}$ is a single 18-bit, unbuffered voltage output digital-to-analog converter (DAC) that operates from a bipolar supply of up to 33 V . The AD5781 accepts a positive reference input range of 5 V to $\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}$ and a negative reference input range of V_{SS} +2.5 V to 0 V . The AD5781 offers a relative accuracy specification of ± 0.5 LSB maximum, and operation is guaranteed monotonic with a ± 0.5 LSB differential nonlinearity (DNL) maximum specification.
The part uses a versatile 3-wire serial interface that operates at clock rates of up to 35 MHz and is compatible with standard serial peripheral interface (SPI), QSPI ${ }^{\text {mo }}$, MICROWIRE ${ }^{\text {mw }}$, and DSP interface standards. The part incorporates a power-on reset circuit that ensures that the DAC output powers up to 0 V and in a known output impedance state and remains in this state until a valid write to the device takes place. The part provides an output clamp feature that places the output in a defined load state.

[^0]

PRODUCT HIGHLIGHTS

1. True 18-Bit Accuracy.
2. Wide Power Supply Range of Up to $\pm 16.5 \mathrm{~V}$.
3. $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range.
4. Low $7.5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ Noise.
5. Low $0.05 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Temperature Drift.

Table 1. Complementary Devices

Part No.	Description
AD8675	Ultraprecision, $36 \mathrm{~V}, 2.8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ rail-to-rail output op amp
AD8676	Ultraprecision, $36 \mathrm{~V}, 2.8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ dual rail-to- rail output op amp
ADA4898-1	High voltage, low noise, low distortion, unity gain stable, high speed op amp

Table 2. Related Devices

Part No.	Description
AD5791	20-bit, 1 ppm accurate DAC
AD5541A/AD5542A	16-bit, 1 LSB accurate 5 V DAC

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Timing Characteristics 5
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configuration and Function Description 8
Typical Performance Characteristics 9
Terminology 17
Theory of Operation 19
DAC Architecture 19
REVISION HISTORY
4/2018—Rev. D to Rev. E
Added Power-Up Sequence Section and Figure 50; RenumberedSequentially24
7/2013-Rev. C to Rev. D
Changes to t_{1} Test Conditions/Comments and Endnote 2 5
Deleted Figure 4 7
Deleted Daisy-Chain Operation Section 20
11/2011-Rev. B to Rev. C
Added Figure 48; Renumbered Sequentially 17
Change to Ideal Transfer Function Equation 22
9/2011—Rev. A to Rev. B
Added Patent Note 1
Changes to Table 3 3
Changes to OPGND Description, Table 12 23
Hardware Control Pins 20
On-Chip Registers 21
AD5781 Features 24
Power-On to 0 V 24
Power-Up Sequence 24
Configuring the AD5781 24
DAC Output State 24
Linearity Compensation 24
Output Amplifier Configuration. 24
Applications Information 26
Typical Operating Circuit 26
Evaluation Board 26
Outline Dimensions 27
Ordering Guide 27
8/2011 - Rev. 0 to Rev. A
Change to Features Section 1
Changes to Specifications Section 3
Deleted t_{14} Parameter from Timing Specifications Section,
Table 4 5
Changes to Figure 2 and Figure 3 6
Changes to Figure 4. 7
Replaced Figure 42 and Figure 43 16
Added New Figure 44, Figure 45, and Figure 46, RenumberedSequentially16
7/2010—Revision 0: Initial Version

AD5781

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=+12.5 \mathrm{~V}$ to $+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$ to $-12.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REFP}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{REfN}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{IO} \mathrm{V}_{\mathrm{CC}}=+1.71 \mathrm{~V}$ to +5.5 V , $\mathrm{R}_{\mathrm{L}}=$ unloaded, $\mathrm{C}_{\mathrm{L}}=$ unloaded, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

Table 3.

Parameter	A, B Version ${ }^{1}$			Unit	Test Conditions/Comments	
	Min	Typ	Max			
STATIC PERFORMANCE ${ }^{2}$						
Resolution	18			Bits		
Integral Nonlinearity Error (Relative Accuracy)	-0.5	± 0.25	+0.5	LSB	B version, $\mathrm{V}_{\text {refp }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {refs }}=-10 \mathrm{~V}$	
	-0.5	± 0.25	+0.5	LSB	B version, $\mathrm{V}_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {Ref }}=0 \mathrm{~V}^{3}$	
	-1	± 0.5	+1	LSB	B version, $\mathrm{V}_{\text {refp }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {Refn }}=0 \mathrm{~V}^{3}$	
	-4	± 2	+4	LSB	A version ${ }^{4}$	
Differential Nonlinearity Error	-0.5	± 0.25	+0.5	LSB	$\mathrm{V}_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {REFN }}=-10 \mathrm{~V}$	
	-0.5	± 0.25	+0.5	LSB	$\mathrm{V}_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {refn }}=0 \mathrm{~V}^{3}$	
	-1	± 0.5	+1	LSB	$V_{\text {RefP }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {Ref }}=0 \mathrm{~V}^{3}$	
Linearity Error Long-Term Stability ${ }^{5}$		0.04		LSB	After 500 hours at $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	
		0.05		LSB	After 1000 hours at $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	
		0.03		LSB	After 1000 hours $\mathrm{t}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	
Full-Scale Error	-1.75	± 0.25	+1.75	LSB	$\mathrm{V}_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {REFN }}=-10 \mathrm{~V}^{3}$	
	-2.75	± 0.062	+2.75	LSB	$V_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=0 \mathrm{~V}^{3}$	
	-5.25	± 0.2	+5.25	LSB	$V_{\text {REFP }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {Ref }}=0 \mathrm{~V}^{3}$	
	-1	± 0.25	+1	LSB	$\begin{aligned} & V_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {REFN }}=-10 \mathrm{~V}^{3}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \end{aligned}$	
	-1	± 0.062	+1	LSB	$V_{\text {Refp }}=10 \mathrm{~V}, \mathrm{~V}_{\text {Reen }}=0 \mathrm{~V}^{3}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	
	-1.5	± 0.2	+1.5	LSB	$V_{\text {REFP }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}^{3}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	
Full-Scale Error Temperature Coefficient ${ }^{3}$ Zero-Scale Error		± 0.02		ppm FSR/ $/{ }^{\circ} \mathrm{C}$		
	-1.75	± 0.025	+1.75	LSB	$\mathrm{V}_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {REFN }}=-10 \mathrm{~V}^{3}$	
	-2.5	± 0.38	+2.5	LSB	$V_{\text {Refp }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=0 \mathrm{~V}^{3}$	
	-5.25	± 0.19	+5.25	LSB	$V_{\text {REFP }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {ReF }}=0 \mathrm{~V}^{3}$	
	-1	± 0.025	+1	LSB	$\begin{aligned} & V_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {REFN }}=-10 \mathrm{~V}^{3}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \end{aligned}$	
	-1	± 0.38	+1	LSB	$V_{\text {RefP }}=10 \mathrm{~V}, \mathrm{~V}_{\text {Reen }}=0 \mathrm{~V}^{3}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	
	-1.5	± 0.19	+1.5	LSB	$V_{\text {REFP }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ReF }}=0 \mathrm{~V}^{3}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	
Zero-Scale Error Temperature Coefficient ${ }^{3}$ Gain Error		± 0.04		ppm FSR/ ${ }^{\circ} \mathrm{C}$		
	-6	± 0.3	+6	ppm FSR	$\mathrm{V}_{\text {Refp }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {refn }}=-10 \mathrm{~V}^{3}$	
	-10	± 0.4	+10	ppm FSR	$\mathrm{V}_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {Refn }}=0 \mathrm{~V}^{3}$	
	-20	± 0.4	+20	ppm FSR	$\mathrm{V}_{\text {REFP }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REFN }}=0 \mathrm{~V}^{3}$	
Gain Error Temperature Coefficient ${ }^{3}$	± 0.04			ppm FSR/ ${ }^{\circ} \mathrm{C}$		
R1, RfB Matching		0.01				
OUTPUT CHARACTERISTICS ${ }^{3}$						
Output Voltage Range	$V_{\text {Ref }}$		$V_{\text {REFP }}$	V		
Output Slew Rate		50		V/ $/ \mathrm{s}$	Unbuffered output, $10 \mathrm{M} \Omega \\| 20 \mathrm{pF}$ load	
Output Voltage Settling Time		1		$\mu \mathrm{s}$	10 V step to 0.02%, using AD845 buffer in unity-gain mode	
		1		$\mu \mathrm{s}$	125 code step to ± 1 LSB 6	
Output Noise Spectral Density		7.5		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	at 1 kHz , DAC code $=$ midscale	
		7.5		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	at $10 \mathrm{kHz}, \mathrm{DAC}$ code $=$ midscale	
		7.5		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	at 100 kHz , DAC code $=$ midscale	
Output Voltage Noise		1.1		$\mu \vee \mathrm{p}-\mathrm{p}$	DAC code = midscale, 0.1 Hz to 10 Hz bandwidth ${ }^{7}$	

[^1]
TIMING CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V ; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 4.

Parameter	Limit ${ }^{1}$		Unit	Test Conditions/Comments
	$10 \mathrm{~V}_{\mathrm{cc}}=1.71 \mathrm{~V}$ to 3.3 V	$10 \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V}$ to 5.5 V		
$\mathrm{t}_{1}{ }^{2}$	40	28	ns min	SCLK cycle time
	92	60	$n \mathrm{~ns}$ min	SCLK cycle time (readback mode)
t_{2}	15	10	ns min	SCLK high time
t_{3}	9	5	ns min	SCLK low time
t_{4}	5	5	ns min	$\overline{\text { SYNC }}$ to SCLK falling edge setup time
t_{5}	2	2	ns min	SCLK falling edge to $\overline{\text { SYNC }}$ rising edge hold time
t_{6}	48	40	ns min	Minimum $\overline{\text { SYNC }}$ high time
t_{7}	8	6	ns min	$\overline{\text { SYNC }}$ rising edge to next SCLK falling edge ignore
t_{8}	9	7	ns min	Data setup time
t_{9}	12	7	ns min	Data hold time
t_{10}	13	10	ns min	$\overline{\text { LDAC }}$ falling edge to $\overline{\text { SYNC }}$ falling edge
t_{11}	20	16	ns min	$\overline{\text { SYNC }}$ rising edge to $\overline{L D A C}$ falling edge
t_{12}	14	11	ns min	$\overline{\text { LDAC }}$ pulse width low
t_{13}	130	130	ns typ	$\overline{\text { LDAC }}$ falling edge to output response time
t_{14}	130	130	ns typ	$\overline{\text { SYNC }}$ rising edge to output response time ($\overline{\text { LDAC }}$ tied low)
t_{15}	50	50	ns min	$\overline{\mathrm{CLR}}$ pulse width low
t_{16}	140	140	ns typ	$\overline{\mathrm{CLR}}$ pulse activation time
t_{17}	0	0	ns min	$\overline{\text { SYNC falling edge to first SCLK rising edge }}$
t_{18}	65	60	ns max	$\overline{\text { SYNC }}$ rising edge to SDO tristate ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)
t_{19}	62	45	ns max	SCLK rising edge to SDO valid ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)
t_{20}	0	0	ns min	$\overline{\text { SYNC }}$ rising edge to SCLK rising edge ignore
t_{21}	35	35	ns typ	$\overline{\text { RESET }}$ pulse width low
t_{22}	150	150	ns typ	$\overline{\mathrm{RESET}}$ pulse activation time

[^2]
AD5781

Figure 2. Write Mode Timing Diagram

Figure 3. Readback Mode Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Transient currents of up to 100 mA do not cause SCR latch-up.

Table 5.

Parameter	Rating
VDD to AGND	-0.3 V to +34 V
$V_{s s}$ to AGND	-34 V to +0.3 V
$V_{\text {DD }}$ to $V_{S S}$	-0.3 V to +34 V
$V_{\text {cc }}$ to DGND	-0.3 V to +7 V
IOV ${ }_{\text {cc }}$ to DGND	$\begin{aligned} & -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}}+3 \mathrm{~V} \text { or }+7 \mathrm{~V} \\ & \text { (whichever is less) } \end{aligned}$
Digital Inputs to DGND	$\begin{aligned} & -0.3 \mathrm{~V} \text { to } \mathrm{IO} \mathrm{~V} \mathrm{cc}+0.3 \mathrm{~V} \text { or } \\ & +7 \mathrm{~V} \text { (whichever is less) } \end{aligned}$
Vout to AGND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$V_{\text {Refpr }}$ to AGND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$V_{\text {REFPs }}$ to AGND	-0.3 V to V DD +0.3 V
$V_{\text {Refnf }}$ to AGND	$\mathrm{V}_{\text {ss }}-0.3 \mathrm{~V}$ to +0.3 V
$V_{\text {Refns }}$ to AGND	$\mathrm{V}_{\text {ss }}-0.3 \mathrm{~V}$ to +0.3 V
DGND to AGND	-0.3 V to +0.3 V
Operating Temperature Range, T_{A} Industrial	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, Tر max	$150^{\circ} \mathrm{C}$
Power Dissipation	$\left(T_{J} \max -\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$
TSSOP Package	
θ_{JA} Thermal Impedance	$143^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {cc }}$ Thermal Impedance	$45^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature	JEDEC industry standard
Soldering	J-STD-020
ESD (Human Body Model)	1.5 kV

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

This device is a high performance integrated circuit with an ESD rating of 1.5 kV , and it is ESD sensitive. Proper precautions should be taken for handling and assembly.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTION

Figure 4. Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	INV	Connection to Inverting Input of External Amplifier. See the AD5781 Features section for further details.
2	Vout	Analog Output Voltage.
3	$V_{\text {REFPS }}$	Positive Reference Sense Voltage Input. A voltage range of 5 V to $\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}$ can be connected. A unity gain amplifier must be connected at this pin, in conjunction with the $\mathrm{V}_{\text {REFF }}$ pin. See the AD5781 Features section for further details.
4	$V_{\text {REFPF }}$	Positive Reference Force Voltage Input. A voltage range of 5 V to $\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}$ can be connected. A unity gain amplifier must be connected at these pin, in conjunction with the $V_{\text {REPPS }}$ pin. See AD5781 Features section for further details.
5	$V_{D D}$	Positive Analog Supply Connection. A voltage range of 7.5 V to 16.5 V can be connected. V_{DD} should be decoupled to AGND.
6	$\overline{\text { RESET }}$	Active Low Reset Logic Input Pin. Asserting this pin returns the AD5781 to its power-on status.
7	$\overline{\mathrm{CLR}}$	Active Low Clear Logic Input Pin. Asserting this pin sets the DAC register to a user defined value (see Table 13) and updates the DAC output. The output value depends on the DAC register coding that is being used, either binary or twos complement.
8	$\overline{\text { LDAC }}$	Active Low Load DAC Logic Input Pin. This is used to update the DAC register and, consequently, the analog output. When tied permanently low, the output is updated on the rising edge of $\overline{S Y N C}$. If $\overline{\mathrm{LDAC}}$ is held high during the write cycle, the input register is updated, but the output update is held off until the falling edge of $\overline{\mathrm{LDAC}}$. The $\overline{\mathrm{LDAC}}$ pin should not be left unconnected.
9	$\mathrm{V}_{\text {cc }}$	Digital Supply Connection. A voltage in the range of 2.7 V to 5.5 V can be connected. $\mathrm{V}_{\text {cc }}$ should be decoupled to DGND.
10	IOV Vcc	Digital Interface Supply Pin. Digital threshold levels are referenced to the voltage applied to this pin. A voltage range of 1.71 V to 5.5 V can be connected. $I O \mathrm{~V}_{\mathrm{cc}}$ should not be allowed to exceed V_{cc}.
11	SDO	Serial Data Output Pin. Data is clocked out on the rising edge of the serial clock input.
12	SDIN	Serial Data Input Pin. This device has a 24 -bit shift register. Data is clocked into the register on the falling edge of the serial clock input.
13	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at clock rates of up to 35 MHz .
14	$\overline{\text { SYNC }}$	Active Low Digital Interface Synchronization Input Pin. This is the frame synchronization signal for the input data. When $\overline{\mathrm{SYNC}}$ is low, it enables the input shift register, and data is then transferred in on the falling edges of the following clocks. The input shift register is updated on the rising edge of $\overline{\text { SYNC }}$.
15	DGND	Ground Reference Pin for Digital Circuitry.
16	$\mathrm{V}_{\text {REENF }}$	Negative Reference Force Voltage Input. A voltage range of $\mathrm{V}_{\mathrm{ss}}+2.5 \mathrm{~V}$ to 0 V can be connected. A unity gain amplifier must be connected at this pin, in conjunction with the $\mathrm{V}_{\text {REFNS }}$ pin. See the AD5781 Features section for further details.
17	$V_{\text {Refns }}$	Negative Reference Sense Voltage Input. A voltage range of $\mathrm{V}_{s s}+2.5 \mathrm{~V}$ to 0 V can be connected. A unity gain amplifier must be connected at these pin, in conjunction with the $V_{\text {RENF }}$ pin. See the AD5781 Features section for further details.
18	Vss	Negative Analog Supply Connection. A voltage range of -16.5 V to -2.5 V can be connected. $\mathrm{V}_{\text {sS }}$ should be decoupled to AGND.
19	AGND	Ground Reference Pin for Analog Circuitry.
20	RfB	Feedback Connection for External Amplifier. See the AD5781 Features section for further details.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Integral Nonlinearity Error vs. DAC Code, ± 10 V Span

Figure 6. Integral Nonlinearity Error vs. DAC Code, +10 V Span

Figure 7. Integral Nonlinearity Error vs. DAC Code, +5 V Span

Figure 8. Integral Nonlinearity Error vs. DAC Code, ± 10 V Span, X2 Gain Mode

Figure 9. Differential Nonlinearity Error vs. DAC Code, ± 10 V Span

Figure 10. Differential Nonlinearity Error vs. DAC Code, +10 V Span

Figure 11. Differential Nonlinearity Error vs. DAC Code, +5 V Span

Figure 12. Differential Nonlinearity Error vs. DAC Code,± 10 V Span, X2 Gain Mode

Figure 13. Integral Nonlinearity Error vs. Temperature

Figure 14. Differential Nonlinearity Error vs. Temperature

Figure 15. Integral Nonlinearity Error vs. Supply Voltage, ± 10 V Span

Figure 16. Integral Nonlinearity Error vs. Supply Voltage, +5 V Span

Figure 17. Differential Nonlinearity Error vs. Supply Voltage, ± 10 V Span

Figure 18. Differential Nonlinearity Error vs. Supply Voltage, +5 V Span

Figure 19. Zero-Scale Error vs. Supply Voltage, ± 10 V Span

Figure 20. Zero-Scale Error vs. Supply Voltage, +5 V Span

Figure 21. Midscale Error vs. Supply Voltage, ± 10 V Span

Figure 22. Midscale Error vs. Supply Voltage, +5 V Span

Figure 23. Full-Scale Error vs. Supply Voltage, ± 10 V Span

Figure 24. Full-Scale Error vs. Supply Voltage, +5 V Span

Figure 25. Gain Error vs. Supply Voltage, ± 10 V Span

Figure 26. Gain Error vs. Supply Voltage, +5 V Span

Figure 27. Integral Nonlinearity Error vs. Reference Voltage

Figure 28. Differential Nonlinearity Error vs. Reference Voltage

Figure 29. Zero-Scale Error vs. Reference Voltage

Figure 30. Midscale Error vs. Reference Voltage

Figure 31. Full-Scale Error vs. Reference Voltage

Figure 32. Gain Error vs. Reference Voltage

Figure 33. Full-Scale Error vs. Temperature

Figure 34. Midscale Error vs. Temperature

Figure 35. Zero-Scale Error vs. Temperature

Figure 36. Gain Error vs. Temperature

Figure 37. IOIcc vs. Logic Input Voltage

Figure 38. Power Supply Currents vs. Power Supply Voltages

Figure 39. Rising Full-Scale Voltage Step

Figure 40. Falling Full-Scale Voltage Step

Figure 41. 125 Code Step Settling Time

Figure 42. 6 MSB Segment Glitch Energy for ± 10 V V REF

Figure 43. 6 MSB Segment Glitch Energy for $10 \mathrm{~V} V_{\text {REF }}$

Figure 44. 6 MSB Segment Glitch Energy for 5 V V $V_{\text {REF }}$

Figure 45. Midscale Peak-to-Peak Glitch for $\pm 10 \mathrm{~V}$

Figure 46. Voltage Output Noise, 0.1 Hz to 10 Hz Bandwidth

Figure 47. Noise Spectral Density vs. Frequency

Figure 48. Glitch Impulse on Removal of Output Clamp

TERMINOLOGY

Relative Accuracy

Relative accuracy, or integral nonlinearity (INL), is a measure of the maximum deviation, in LSB, from a straight line passing through the endpoints of the DAC transfer function. A typical INL error vs. code plot is shown in Figure 5.

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB maximum ensures monotonicity. This DAC is guaranteed monotonic. A typical DNL error vs. code plot is shown in Figure 9.

Linearity Error Long-Term Stability

Linearity error long-term stability is a measure of the stability of the linearity of the DAC over a long period of time. It is specified in LSB for a time period of 500 hours and 1000 hours at an elevated ambient temperature.

Zero-Scale Error

Zero-scale error is a measure of the output error when zero-scale code (0x00000) is loaded to the DAC register. Ideally, the output voltage should be $V_{\text {refns. }}$ Zero-scale error is expressed in LSBs.

Zero-Scale Error Temperature Coefficient

Zero-scale error temperature coefficient is a measure of the change in zero-scale error with a change in temperature. It is expressed in ppm FSR/ ${ }^{\circ} \mathrm{C}$.

Full-Scale Error

Full-scale error is a measure of the output error when full-scale code ($0 \times 3 \mathrm{FFFF}$) is loaded to the DAC register. Ideally, the output voltage should be $\mathrm{V}_{\text {refps }}$ - 1 LSB. Full-scale error is expressed in LSBs.

Full-Scale Error Temperature Coefficient

Full-scale error temperature coefficient is a measure of the change in full-scale error with a change in temperature. It is expressed in ppm $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$.

Gain Error

Gain error is a measure of the span error of the DAC. It is the deviation in slope of the DAC transfer characteristic from ideal, expressed in ppm of the full-scale range.

Gain Error Temperature Coefficient

Gain error temperature coefficient is a measure of the change in gain error with a change in temperature. It is expressed in ppm FSR/ $/{ }^{\circ} \mathrm{C}$.

Midscale Error

Midscale error is a measure of the output error when midscale code (0×20000) is loaded to the DAC register. Ideally, the output voltage should be $\left(\mathrm{V}_{\text {ReFp }}-\mathrm{V}_{\text {Refns }}\right) / 2+\mathrm{V}_{\text {Refns }}$. Midscale error is expressed in LSBs.

Midscale Error Temperature Coefficient

Midscale error temperature coefficient is a measure of the change in mid-scale error with a change in temperature. It is expressed in ppm FSR/ $/{ }^{\circ} \mathrm{C}$.

Output Slew Rate

Slew rate is a measure of the limitation in the rate of change of the output voltage. The slew rate of the AD5781 output voltage is determined by the capacitive load presented to the Vout pin. The capacitive load in conjunction with the $3.4 \mathrm{k} \Omega$ output impedance of the AD5781 set the slew rate. Slew rate is measured from 10% to 90% of the output voltage change and is expressed in $V / \mu s$.

Output Voltage Settling Time

Output voltage settling time is the amount of time it takes for the output voltage to settle to a specified level for a specified change in voltage. For fast settling applications, a high speed buffer amplifier is required to buffer the load from the $3.4 \mathrm{k} \Omega$ output impedance of the AD5781, in which case, it is the amplifier that determines the settling time.

Digital-to-Analog Glitch Impulse

Digital-to-analog glitch impulse is the impulse injected into the analog output when the input code in the DAC register changes state. It is specified as the area of the glitch in nV-sec and is measured when the digital input code is changed by 1 LSB at the major carry transition (see Figure 42).

Output Enabled Glitch Impulse

Output enabled glitch impulse is the impulse injected into the analog output when the clamp to ground on the DAC output is removed. It is specified as the area of the glitch in nV -sec (see Figure 48).

Digital Feedthrough

Digital feedthrough is a measure of the impulse injected into the analog output of the DAC from the digital inputs of the DAC but is measured when the DAC output is not updated. It is specified in nV -sec and measured with a full-scale code change on the data bus, that is, from all 0 s to all 1 s , and vice versa.

Spurious Free Dynamic Range (SFDR)

Spurious free dynamic range is the usable dynamic range of a DAC before spurious noise interferes or distorts the fundamental signal. It is measured by the difference in amplitude between the fundamental and the largest harmonically or nonharmonically related spur from dc to full Nyquist bandwidth (half the DAC sampling rate, or $\mathrm{f}_{\mathrm{s}} / 2$). SFDR is measured when the signal is a digitally generated sine wave.

Total Harmonic Distortion (THD)

Total harmonic distortion is the ratio of the rms sum of the harmonics of the DAC output to the fundamental value. Only the second to fifth harmonics are included.

DC Power Supply Rejection Ratio.

DC power supply rejection ratio is a measure of the rejection of the output voltage to dc changes in the power supplies applied to the DAC. It is measured for a given dc change in power supply voltage and is expressed in $\mu \mathrm{V} / \mathrm{V}$.

AC Power Supply Rejection Ratio (AC PSRR)

AC power supply rejection ratio is a measure of the rejection of the output voltage to ac changes in the power supplies applied to the DAC. It is measured for a given amplitude and frequency change in power supply voltage and is expressed in decibels.

THEORY OF OPERATION

The AD5781 is a high accuracy, fast settling, single, 18-bit, serial input, voltage output DAC. It operates from a VDD supply voltage of 7.5 V to 16.5 V and a $\mathrm{V}_{\text {Ss }}$ supply of -16.5 V to -2.5 V . Data is written to the AD5781 in a 24 -bit word format via a 3-wire serial interface. The AD5781 incorporates a power-on reset circuit that ensures the DAC output powers up to 0 V with the Vout pin clamped to AGND through a $\sim 6 \mathrm{k} \Omega$ internal resistor.

DAC ARCHITECTURE

The architecture of the AD5781 consists of two matched DAC sections. A simplified circuit diagram is shown in Figure 49. The six MSBs of the 18-bit data-word are decoded to drive 63 switches, E0 to E62. Each of these switches connects one of 63 matched resistors to either the $V_{\text {refp }}$ or $V_{\text {refn }}$ voltage. The remaining 12 bits of the data-word drive the S 0 to S 11 switches of a 12 -bit voltage mode R-R ladder network.

Figure 49. DAC Ladder Structure Serial Interface
The AD5781 has a 3-wire serial interface ($\overline{\text { SYNC }}$, SCLK, and SDIN) that is compatible with SPI, QSPI, and MICROWIRE interface standards, as well as most DSPs (see Figure 2 for a timing diagram).

Input Shift Register

The input shift register is 24 bits wide. Data is loaded into the device MSB first as a 24-bit word under the control of a serial clock input, SCLK, which can operate at up to 35 MHz . The input register consists of an $\mathrm{R} / \overline{\mathrm{W}}$ bit, three address bits, and twenty data bits as shown in Table 7. The timing diagram for this operation is shown in Figure 2.

Table 7. Input Shift Register Format

DB23	DB22	DB21	DB20	DB19	DB0
R/ \bar{W}	Register address			Register data	

Table 8. Decoding the Input Shift Register

$\mathbf{R} / \overline{\mathbf{W}}$	Register Address			Description
X^{1}	0	0	0	No operation (NOP). Used in readback operations.
0	0	0	1	Write to the DAC register.
0	0	1	0	Write to the control register.
0	0	1	1	Write to the clearcode register.
0	1	0	0	Write to the software control register.
1	0	0	1	Read from the DAC register.
1	0	1	0	Read from the control register.
1	0	1	1	Read from the clearcode register.

[^3]
Standalone Operation

The serial interface works with both a continuous and noncontinuous serial clock. A continuous SCLK source can be used only if $\overline{S Y N C}$ is held low for the correct number of clock cycles. In gated clock mode, a burst clock containing the exact number of clock cycles must be used, and SYNC must be taken high after the final clock to latch the data. The first falling edge of $\overline{\text { SYNC }}$ starts the write cycle. Exactly 24 falling clock edges must be applied to SCLK before $\overline{\text { SYNC }}$ is brought high again. If $\overline{\text { SYNC }}$ is brought high before the $24^{\text {th }}$ falling SCLK edge, the data written is invalid. If more than 24 falling SCLK edges are applied before $\overline{\mathrm{SYNC}}$ is brought high, the input data is also invalid. The input shift register is updated on the rising edge of $\overline{\text { SYNC }}$. For another serial transfer to take place, $\overline{\text { SYNC }}$ must be brought low again. After the end of the serial data transfer, data is automatically transferred from the input shift register to the addressed register. Once the write cycle is complete, the output can be updated by taking $\overline{\mathrm{LDAC}}$ low while $\overline{\text { SYNC }}$ is high.

Readback

The contents of all the on-chip registers can be read back via the SDO pin. Table 8 outlines how the registers are decoded. After a register has been addressed for a read, the next 24 clock cycles clock the data out on the SDO pin. The clocks must be applied while $\overline{S Y N C}$ is low. When $\overline{\text { SYNC }}$ is returned high, the SDO pin is placed in tristate. For a read of a single register, the NOP function can be used to clock out the data. Alternatively, if more than one register is to be read, the data of the first register to be addressed can be clocked out at the same time the second register to be read is being addressed. The SDO pin must be enabled to complete a readback operation. The SDO pin is enabled by default.

HARDWARE CONTROL PINS

Load DAC Function (LDAC)

After data has been transferred into the input register of the DAC, there are two ways to update the DAC register and DAC output. Depending on the status of both $\overline{S Y N C}$ and $\overline{\text { LDAC }}$, one of two update modes is selected: synchronous DAC updating or asynchronous DAC updating.

Synchronous DAC Update

In this mode, $\overline{\text { LDAC }}$ is held low while data is being clocked into the input shift register. The DAC output is updated on the rising edge of SYNC.

Asynchronous DAC Update

In this mode, $\overline{\mathrm{LDAC}}$ is held high while data is being clocked into the input shift register. The DAC output is asynchronously updated by taking $\overline{\text { LDAC }}$ low after $\overline{\text { SYNC }}$ has been taken high. The update now occurs on the falling edge of $\overline{\mathrm{LDAC}}$.

Reset Function ($\overline{\text { RESET }}$)

The AD5781 can be reset to its power-on state by two means: either by asserting the $\overline{\text { RESET }}$ pin or by utilizing the software RESET control function (see Table 14). If the $\overline{\text { RESET }}$ pin is not used, it should be hardwired to IOV ${ }_{c c}$.

Asynchronous Clear Function ($\overline{\mathbf{C L R})}$

The $\overline{\mathrm{CLR}}$ pin is an active low clear that allows the output to be cleared to a user defined value. The 18 -bit clear code value is programmed to the clearcode register (see Table 13). It is necessary to maintain $\overline{\mathrm{CLR}}$ low for a minimum amount of time to complete the operation (see Figure 2). When the $\overline{\mathrm{CLR}}$ signal is returned high, the output remains at the clear value (if $\overline{\mathrm{LDAC}}$ is high) until a new value is loaded to the DAC register. The output cannot be updated with a new value while the $\overline{\mathrm{CLR}}$ pin is low. A clear operation can also be performed by setting the CLR bit in the software control register (see Table 14).

AD5781

Table 9. Hardware Control Pins Truth Table

$\overline{\text { LDAC }}$	$\overline{\mathbf{C L R}}$	$\overline{\mathbf{R E S E T}}$	Function
X^{1}	X^{1}	0	The AD5781 is in reset mode. The device cannot be programmed.
X^{1}	X^{1}	f	The AD5781 is returned to its power-on state. All registers are set to their default values.
0	0	1	The DAC register is loaded with the clearcode register value, and the output is set accordingly.
0	1	1	The output is set according to the DAC register value.
1	0	1	The DAC register is loaded with the clearcode register value, and the output is set accordingly.
7	1	1	The output is set according to the DAC register value.
7	0	1	The output remains at the clear code value.
\jmath	1	1	The output remains set according to the DAC register value.
f	0	1	The output remains at the clear code value.
1	7	1	The DAC register is loaded with the clearcode register value and the output is set accordingly.
0	7	1	The DAC register is loaded with the clearcode register value and the output is set accordingly.
1	I	1	The output remains at the clear code value.
0	I	1	The output is set according to the DAC register value.

${ }^{1} \mathrm{X}$ is don't care.

ON-CHIP REGISTERS

DAC Register

Table 10 outlines how data is written to and read from the DAC register.
Table 10. DAC Register
MSB
LSB

DB23	DB22	DB21	DB20	DB19	DB2	DB1	DB0				
R/ \bar{W}	Register address								DAC register data		
R/ $/ \mathrm{W}$	0	0	1	18 -bits of data	X^{1}	X^{1}					

${ }^{1} \mathrm{X}$ is don't care.

The following equation describes the ideal transfer function of the DAC:

$$
V_{O U T}=\frac{\left(V_{R E F P}-V_{\text {REFN }}\right) \times D}{2^{18}-1}+V_{\text {REFN }}
$$

where:
$V_{\text {Refn }}$ is the negative voltage applied at the $V_{\text {refns }}$ input pin.
$V_{\text {REFP }}$ is the positive voltage applied at the $V_{\text {REFPS }}$ input pin.
D is the 18 -bit code programmed to the DAC.

Control Register

The control register controls the mode of operation of the AD5781.
Table 11. Control Register

MSB															
DB23	DB22	DB21	DB20	DB19...DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
$\mathrm{R} / \overline{\mathrm{W}}$	Register address			Control register data											
$\mathrm{R} / \overline{\mathrm{W}}$	0	1	0	Reserved	Reserved	LIN CO				SDODIS	BIN/2sC	DACTRI	OPGND	RBUF	Reserved

Table 12. Control Register Functions

Clearcode Register

The clearcode register sets the value to which the DAC output is set when the $\overline{\text { CLR }}$ pin or CLR bit is asserted. The output value depends on the DAC coding that is being used, either binary or twos complement. The default register value is 0 .

Table 13. Clearcode Register
MSB
LSB

DB23	DB22	DB21	DB20	DB19	DB2	DB1	DB0
R/ \bar{W}	Register address			Clearcode register data			
R/ \bar{W}	0	1	1	18 -bits of data	X^{1}	X^{1}	
${ }^{1} \times$ is don't care.							

AD5781

Software Control Register

This is a write only register in which writing a 1 to a particular bit has the same effect as pulsing the corresponding pin low.
Table 14. Software Control Register

MSB								
DB23	DB22	DB21	DB20	DB19	DB3	DB2	DB1	DBO
R/W	Register address			Software control register data				
0	1	0	0	Reserved		RESET	CLR ${ }^{1}$	LDAC 2

${ }^{1}$ The CLR function has no effect if the $\overline{\text { LDAC }}$ pin is low.
${ }^{2}$ The LDAC function has no effect if the $\overline{\mathrm{CLR}}$ pin is low.
Table 15. Software Control Register Functions

Function	Description
LDAC	Setting this bit to 1 updates the DAC register and consequently the DAC output.
CLR	Setting this bit to 1 sets the DAC register to a user defined value (see Table 13) and updates the DAC output. The output value depends on the DAC register coding that is being used, either binary or twos complement.
RESET	Setting this bit to 1 returns the AD5781 to its power-on state.

AD5781 FEATURES
 POWER-ON TO OV

The AD5781 contains a power-on reset circuit that, as well as resetting all registers to their default values, controls the output voltage during power-up. Upon power-on, the DAC is placed in tristate (its reference inputs are disconnected), and its output is clamped to AGND through a $\sim 6 \mathrm{k} \Omega$ resistor. The DAC remains in this state until programmed otherwise via the control register. This is a useful feature in applications where it is important to know the state of the DAC output while it is in the process of powering up.

POWER-UP SEQUENCE

To power up the part in a known safe state, ensure that $V_{C C}$ does not come up while $V_{D D}$ is unpowered during power-on by powering up the $V_{D D}$ supply before the $V_{C C}$ supply. If this cannot be achieved, connect an external Schottky diode across the $V_{D D}$ and $V_{C C}$ supplies as shown in Figure 50.

Figure 50. Schottky Diode Connection

CONFIGURING THE AD5781

After power-on, the AD5781 must be configured for normal operating mode before programming the output. To do this, the control register must be programmed. The DAC is removed from tristate by clearing the DACTRI bit, and the output clamp is removed by clearing the OPGND bit. At this point, the output goes to $\mathrm{V}_{\text {Refn }}$ unless an alternative value is first programmed to the DAC register.

DAC OUTPUT STATE

The DAC output can be placed in one of three states, controlled by the DACTRI and OPGND bits of the control register, as shown in Table 16.

Table 16. AD5781 Output State Truth Table

DACTRI	OPGND	Output State
0	0	Normal operating mode.
0	1	Output is clamped via $\sim 6 \mathrm{k} \Omega$ to AGND.
1	0	Output is in tristate.
1	1	Output is clamped via $\sim 6 \mathrm{k} \Omega$ to AGND.

LINEARITY COMPENSATION

The integral nonlinearity (INL) of the AD5781 can vary according to the applied reference voltage span; the LIN COMP bits of the control register can be programmed to compensate for this variation in INL. The specifications in this data sheet are obtained with LIN COMP $=0000$ for reference spans up to and including 10 V and with LIN COMP $=1100$ for a reference span of 20 V . The default value of the LIN COMP bits is 0000 .

OUTPUT AMPLIFIER CONFIGURATION

There are a number of different ways that an output amplifier can be connected to the AD5781, depending on the voltage references applied and the desired output voltage span.

Unity Gain Configuration

Figure 51 shows an output amplifier configured for unity gain, in this configuration the output spans from $V_{\text {refn }}$ to $V_{\text {refp }}$

Figure 51. Output Amplifier in Unity Gain Configuration
A second unity gain configuration for the output amplifier is one that removes an offset from the input bias currents of the amplifier. It does this by inserting a resistance in the feedback path of the amplifier that is equal to the output resistance of the DAC. The DAC output resistance is $3.4 \mathrm{k} \Omega$. By connecting R1 and R_{Fb} in parallel, a resistance equal to the DAC resistance is available on-chip. Because the resistors are all on one piece of silicon, they are temperature coefficient matched. To enable this mode of operation, the RBUF bit of the control register must be set to Logic 1. Figure 52 shows how the output amplifier is connected to the AD5781. In this configuration, the output amplifier is in unity gain and the output spans from $V_{\text {refn }}$ to $V_{\text {Refp. }}$. This unity gain configuration allows a capacitor to be placed in the amplifier feedback path to improve dynamic performance.

AD5781

Figure 52. Output Amplifier in Unity Gain with Amplifier Input Bias Current Compensation

Gain of Two Configuration

Figure 53 shows an output amplifier configured for a gain of two. The gain is set by the internal matched $6.8 \mathrm{k} \Omega$ resistors, which are exactly twice the DAC resistance, having the effect of removing an offset from the input bias current of the external amplifier. In this configuration, the output spans from $2 \times V_{\text {ReFN }}-$ $\mathrm{V}_{\text {refp }}$ to $\mathrm{V}_{\text {refp. }}$ This configuration is used to generate a bipolar output span from a single-ended reference input, with $\mathrm{V}_{\text {ReFN }}=$ 0 V . For this mode of operation, the RBUF bit of the control register must be cleared to Logic 0 .

Figure 53. Output Amplifier in Gain of Two Configuration

APPLICATIONS INFORMATION

TYPICAL OPERATING CIRCUIT

Figure 54 shows a typical operating circuit for the AD5781 using an AD8676 for reference buffers and an AD8675 as an output buffer. To meet the specified linearity, force sense buffers must be used on the reference inputs. Because the output impedance of the AD5781 is $3.4 \mathrm{k} \Omega$, an output buffer is required for driving low resistive, high capacitive loads.

EVALUATION BOARD

An evaluation board is available for the AD5781 to aid designers in evaluating the high performance of the part with minimum effort. The AD5781 evaluation kit includes a populated and tested AD5781 PCB. The evaluation board interfaces to the USB port of a PC. Software is available with the evaluation board to allow the user to easily program the AD5781. The software runs on any PC that has Microsoft ${ }^{\circ}$ Windows ${ }^{\circ}$ XP (SP2) or Vista (32 bits) installed. The EVALAD5781 data sheet is available, which gives full details on the operation of the evaluation board

OUTLINE DIMENSIONS

Figure 55. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20)
Dimensions shown in millimeters

ORDERING GUIDE

Model $^{\mathbf{1}}$	Temperature Range	INL	Package Description	Package Option
AD5781BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 0.5 \mathrm{LSB}$	20 -Lead TSSOP	RU-20
AD5781BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 0.5 \mathrm{LSB}$	20 -Lead TSSOP	RU-20
AD5781ARUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 4 \mathrm{LSB}$	20 -Lead TSSOP	RU-20
AD5781ARUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 4 \mathrm{LSB}$	20 -Lead TSSOP	RU-20
EVAL-AD5781SDZ			Evaluation Board	

[^4]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

[^0]: ${ }^{1}$ Protected by U.S. Patent No 7,884,747, and other patents are pending

[^1]: ${ }^{1}$ Temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical conditions: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {REFP }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {REFN }}=-10 \mathrm{~V}$.
 ${ }^{2}$ Performance characterized with AD8676BRZ voltage reference buffers and AD8675ARZ output buffer.
 ${ }^{3}$ Linearity error refers to both INL error and DNL error; either parameter can be expected to drift by the amount specified after the length of time specified.
 ${ }^{4}$ Valid for all voltage reference spans.
 ${ }^{5}$ Guaranteed by design and characterization, not production tested.
 ${ }^{6}$ The AD5781 is configured in the bias compensation mode with a low-pass RC filter on the output. R = $300 \Omega, \mathrm{C}=143 \mathrm{pF}$ (total capacitance seen by the output buffer, lead capacitance, and so forth).
 ${ }^{7}$ Includes noise contribution from AD8676BRZ voltage reference buffers.
 ${ }^{8}$ Current flowing in an individual logic pin.
 ${ }^{9}$ Includes PSRR of AD8676BRZ voltage reference buffers.

[^2]: ${ }^{1}$ All input signals are specified with $t_{R}=t_{F}=1 \mathrm{~ns} / \mathrm{V}\left(10 \%\right.$ to 90% of $\left.I O V_{c c}\right)$ and timed from a voltage level of $\left(V_{I L}+V_{I H}\right) / 2$.
 ${ }^{2}$ Maximum SCLK frequency is 35 MHz for write mode and 16 MHz for readback mode.

[^3]: ${ }^{1} \mathrm{X}$ is don't care.

[^4]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

