FEATURES

Digitally programmable frequency and phase
12.65 mW power consumption at 3 V

0 MHz to 12.5 MHz output frequency range
28-bit resolution: $0.1 \mathbf{~ H z}$ at 25 MHz reference clock
Sinusoidal, triangular, and square wave outputs
2.3 V to 5.5 V power supply

No external components required
3-wire SPI interface
Power-down option
10-lead MSOP package
Enhanced product features
Supports defense and aerospace applications (AQEC)
Temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Enhanced product change notification
Qualification data available upon request

APPLICATIONS

Frequency stimulus/waveform generation
Liquid and gas flow measurement
Sensory applications: proximity, motion, defect detection
Line loss/attenuation
Test and medical equipment
Sweep/clock generators
Time domain reflectometry (TDR) applications

GENERAL DESCRIPTION

The AD9833-EP is a low power, programmable waveform generator capable of producing sine, triangular, and square wave outputs. Waveform generation is required in various types of sensing, actuation, and time domain reflectometry (TDR) applications. The output frequency and phase are software programmable, allowing easy tuning. No external components are needed. The frequency registers are 28 bits wide. With a 25 MHz clock rate, a resolution of 0.1 Hz can be achieved; with a 1 MHz clock rate, the AD9833-EP can be tuned to 0.004 Hz resolution.
The AD9833-EP is written to via a 3-wire serial interface. This serial interface operates at clock rates up to 40 MHz and is compatible with DSP and microcontroller standards. The device operates with a power supply from 2.3 V to 5.5 V .

The AD9833-EP has a power-down function (SLEEP). This function allows sections of the device that are not being used to be powered down, thus minimizing the current consumption of the part. For example, the DAC can be powered down when a clock output is being generated.
The AD9833-EP is available in a 10 -lead MSOP package. Additional application and technical information can be found in the AD9833 data sheet.

Figure 1.

TABLE OF CONTENTS

Features 1
Applications
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Timing Characteristics 4
Absolute Maximum Ratings5
ESD Caution5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Outline Dimensions 10
Ordering Guide 10

REVISION HISTORY

8/13-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{VDD}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{R}_{\mathrm{SET}}=6.8 \mathrm{k} \Omega$ for VOUT, unless otherwise noted.
Table 1.

Parameter ${ }^{1}$	Min	Typ	Max	Unit	Test Conditions/Comments
SIGNAL DAC SPECIFICATIONS Resolution Update Rate VOUT Maximum VOUT Minimum VOUT Temperature Coefficient DC Accuracy Integral Nonlinearity Differential Nonlinearity		10 0.65 38 200 ± 1.0 ± 0.5	25	Bits MSPS V mV ppm $/{ }^{\circ} \mathrm{C}$ LSB LSB	
DDS SPECIFICATIONS (SFDR) Dynamic Specifications Signal-to-Noise Ratio (SNR) Total Harmonic Distortion (THD) Spurious-Free Dynamic Range (SFDR) Wideband (0 to Nyquist) Narrow-Band ($\pm 200 \mathrm{kHz}$) Clock Feedthrough Wake-Up Time	53.5	$\begin{aligned} & 60 \\ & -66 \\ & -60 \\ & -78 \\ & -60 \\ & 1 \end{aligned}$	-53.5	dB dBc dBc dBc dBc ms	$\begin{aligned} & f_{\text {MCLK }}=25 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=\mathrm{f}_{\text {MCLK }} / 4096 \\ & \mathrm{f}_{\text {MCLK }}=25 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=\mathrm{f}_{\text {MCLK }} / 4096 \\ & \mathrm{f}_{\text {MCLK }}=25 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=\mathrm{f}_{\text {MCLK }} / 50 \\ & \mathrm{f}_{\text {MCLK }}=25 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=\mathrm{f}_{\text {MCLK }} / 50 \end{aligned}$
LOGIC INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, $\mathrm{l}_{\mathrm{INH}} / \mathrm{I}_{\mathrm{INL}}$ Input Capacitance, C_{IN}	$\begin{aligned} & 1.7 \\ & 2.0 \\ & 2.8 \end{aligned}$	3	$\begin{aligned} & 0.5 \\ & 0.7 \\ & 0.8 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \\ & \hline \end{aligned}$	2.3 V to 2.7 V power supply 2.7 V to 3.6 V power supply 4.5 V to 5.5 V power supply 2.3 V to 2.7 V power supply 2.7 V to 3.6 V power supply 4.5 V to 5.5 V power supply
POWER SUPPLIES VDD IDD Low Power Sleep Mode	2.3	$\begin{aligned} & 4.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	V mA mA	$f_{\text {MCLK }}=25 \mathrm{MHz}, \mathrm{foUT}=\mathrm{f}_{\text {MCLK }} / 4096$ IDD code dependent; see Figure 7 DAC powered down, MCLK running

[^0]

Figure 2. Test Circuit Used to Test Specifications

AD9833-EP

TIMING CHARACTERISTICS

$\mathrm{VDD}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$
Table 2.

Parameter	Limit at $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {Max }}$	Unit	Description
t_{1}	40	ns min	MCLK period
t_{2}	16	$n \mathrm{nsmin}$	MCLK high duration
t_{3}	16	ns min	MCLK low duration
t_{4}	25	ns min	SCLK period
t_{5}	10	$n \mathrm{n}$ min	SCLK high duration
t_{6}	10	ns min	SCLK low duration
t_{7}	5	$n \mathrm{nsmin}$	FSYNC to SCLK falling edge setup time
$\mathrm{t}_{8 \text { min }}$	10	$n \mathrm{nsmin}$	FSYNC to SCLK hold time
$\mathrm{t}_{8 \text { max }}$	$\mathrm{t}_{4}-5$	ns max	
t_{9}	5	ns min	Data setup time
t_{10}	3	ns min	Data hold time
t_{11}	5	$n s$ min	SCLK high to FSYNC falling edge setup time

[^1]
Timing Diagrams

Figure 3. Master Clock

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
VDD to AGND	-0.3 V to +6 V
VDD to DGND	-0.3 V to +6 V
AGND to DGND	-0.3 V to +0.3 V
CAP/2.5V	2.75 V
Digital I/O Voltage to DGND	-0.3 V to VDD +0.3 V
Analog I/O Voltage to AGND	-0.3 V to VDD +0.3 V
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
MSOP Package	
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
$\quad \theta_{\mathrm{sc}}$ Thermal Impedance	$44^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	COMP	DAC Bias Pin. This pin is used for decoupling the DAC bias voltage.
2	VDD	Positive Power Supply for the Analog and Digital Interface Sections. The on-board 2.5 V regulator is also supplied from VDD. VDD can have a value from 2.3 V to 5.5 V . A $0.1 \mu \mathrm{~F}$ and a $10 \mu \mathrm{~F}$ decoupling capacitor should be connected between VDD and AGND.
3	CAP/2.5V	The digital circuitry operates from a 2.5 V power supply. This 2.5 V is generated from VDD using an on-board regulator when VDD exceeds 2.7 V . The regulator requires a decoupling capacitor of 100 nF typical, which is connected from CAP/2.5V to DGND. If VDD is less than or equal to $2.7 \mathrm{~V}, \mathrm{CAP} / 2.5 \mathrm{~V}$ should be tied directly to VDD.
4	DGND	Digital Ground.
5	MCLK	Digital Clock Input. DDS output frequencies are expressed as a binary fraction of the frequency of MCLK. The output frequency accuracy and phase noise are determined by this clock.
6	SDATA	Serial Data Input. The 16-bit serial data-word is applied to this input.
7	SCLK	Serial Clock Input. Data is clocked into the AD9833-EP on each falling edge of SCLK.
8	FSYNC	Active Low Control Input. FSYNC is the frame synchronization signal for the input data. When FSYNC is taken low, the internal logic is informed that a new word is being loaded into the device.
9	AGND	Analog Ground.
10	VOUT	Voltage Output. The analog and digital output from the AD9833-EP is available at this pin. An external load resistor is not required because the device has a 200Ω resistor on board.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Current Consumption (IDD) vs. MCLK Frequency for $f_{\text {out }}=$ MCLK/10

Figure 7. Typical I $I_{D D}$ vs. fout for $f_{\text {MCLK }}=25 \mathrm{MHz}$

Figure 8. Narrow-Band SFDR vs. MCLK Frequency

Figure 9. Wideband SFDR vs. MCLK Frequency

Figure 10. Wideband SFDR vs. fout/f MCLк $^{\text {for Various MCLK Frequencies }}$

Figure 11. SNR vs. MCLK Frequency

Figure 12. Wake-Up Time vs. Temperature

Figure 13. VREF vs. Temperature

Figure 14. Power vs. Frequency, $f_{\text {MCLK }}=10 \mathrm{MHz}, f_{\text {Out }}=2.4 \mathrm{kHz}$, Frequency Word $=0 \times 000$ FBA9

Figure 15. Power vs. Frequency, $f_{M C L K}=10 \mathrm{MHz}, f_{\text {OUT }}=1.43 \mathrm{MHz}=f_{M C L K} / 7$, Frequency Word = 0x2492492

Figure 16. Power vs. Frequency, $f_{M C L K}=10 \mathrm{MHz}, f_{\text {OUt }}=3.33 \mathrm{MHz}=f_{M C L K} / 3$,
Frequency Word $=0 \times 5555555$

Figure 17. Power vs. Frequency, $f_{\text {MCLK }}=25 \mathrm{MHz}$, $f_{\text {оUт }}=6 \mathrm{kHz}$, Frequency Word $=0 \times 000$ FBA9

Figure 18. Power vs. Frequency, $f_{\text {MCLK }}=25 \mathrm{MHz}, f_{\text {out }}=60 \mathrm{kHz}$, Frequency Word = 0x009D495

Figure 19. Power vs. Frequency, $f_{\text {MCLк }}=25 \mathrm{MHz}, f_{\text {оUт }}=600 \mathrm{kHz}$, Frequency Word $=0 \times 0624 D D 3$

Figure 20. Power vs. Frequency, $f_{M C L K}=25 \mathrm{MHz}, f_{\text {out }}=2.4 \mathrm{MHz}$, Frequency Word $=0 \times 189374 \mathrm{D}$

Figure 21. Power vs. Frequency, $f_{\text {MCLK }}=25 \mathrm{MHz}, f_{\text {OUT }}=3.857 \mathrm{MHz}=f_{\text {MCLK }} 7$, Frequency Word = 0x2492492

Figure 22. Power vs. Frequency, $f_{M C L K}=25 \mathrm{MHz}, f_{\text {Out }}=8.333 \mathrm{MHz}=f_{\text {MCLK }} / 3$, Frequency Word $=0 \times 5555555$

AD9833-EP

OUTLINE DIMENSIONS

0.10

COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 23. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
AD9833SRMZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10-$-Lead MSOP	RM-10	DMR

${ }^{1} Z=$ RoHS Compliant Part.

Enhanced Product	AD9833-EP

NOTES

AD9833-EP

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

[^0]: ${ }^{1}$ Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; typical specifications are at $25^{\circ} \mathrm{C}$.

[^1]: ${ }^{1}$ Guaranteed by design, not production tested.

