Data Sheet

FEATURES

Low noise, low input bias current FET input amplifier
Very low input bias current: $\pm 0.25 \mathrm{pA}$ typical at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$
Low input voltage noise
$92 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ typical at 10 Hz at 5 V
$\mathbf{5 n V} / \sqrt{ } \mathrm{Hz}$ typical at 100 kHz at $\pm 5 \mathrm{~V}$
Gain bandwidth product: $175 \mathbf{~ M H z}$
Input capacitance
3 pF typical, differential mode
2 pF typical, common mode
Integrated gain switching
Sampling and feedback switch off leakage: ± 0.5 pA typical
Worst case ton/toff times: 105 ns typical/65 ns typical
Integrated analog-to-digital converter (ADC) driver
Differential mode and single-ended mode
Adjustable output common-mode voltage
-5 V to +3.8 V typical for $\pm 5 \mathrm{~V}$ supply
Wide output voltage swing: $\pm 4.8 \mathrm{~V}$ minimum for $\pm 5 \mathrm{~V}$ supply
Linear output current: 18 mA rms typical for $\pm 5 \mathrm{~V}$ supply
SPI or parallel switch control of all functions
Wide operating range: 3.3 V to 12 V
Quiescent current: 8.5 mA typical ($\pm 5 \mathrm{~V}$ full system)
APPLICATIONS
Current to voltage (I to V) conversions
Photodiode preamplifiers
Chemical analyzers
Mass spectrometry
Molecular spectroscopy
Laser/LED receivers
Data acquisition systems

GENERAL DESCRIPTION

The ADA4350 is an analog front end for photodetectors or other sensors whose output produces a current proportional to the sensed parameter or voltage input applications where the system requires the user to select between very precise gain levels to maximize the dynamic range.

The ADA4350 integrates a FET input amplifier, a switching network, and an ADC driver with all functions controllable via a serial peripheral interface (SPI) or parallel control logic into a single IC. The FET input amplifier has very low voltage noise and current noise making it an excellent choice to work with a wide range of photodetectors, sensors, or precision data acquisition systems.
Its switching network allows the user individual selection of up to six different, externally configurable feedback networks; by using external components for the feedback network, the user can more easily match the system to their desired photodetector or sensor capacitance. This feature also allows the use of low thermal drift resistors, if required.
The design of the switches minimizes error sources so that they add virtually no error in the signal path. The output driver can be used in either single-ended or a differential mode and is ideal for driving the input of an ADC.

The ADA4350 can operate from a single +3.3 V supply or a dual $\pm 5 \mathrm{~V}$ supply, offering user flexibility when choosing the polarity of the detector. It is available in a Pb -free, 28 -lead TSSOP package and is specified to operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
Multifunction pin names may be referenced by their relevant function only.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
± 5 V Full System. 3
± 5 V FET Input Amplifier 4
± 5 V Internal Switching Network and Digital Pins 5
$\pm 5 \mathrm{~V}$ ADC Driver 6
5 V Full System 8
5 V FET Input Amplifier 9
5 V Internal Switching Network and Digital Pins. 10
5 V ADC Driver 11
Timing Specifications 13
Absolute Maximum Ratings 15
Thermal Resistance 15
Maximum Power Dissipation 15
ESD Caution 15
Pin Configuration and Function Descriptions. 16
REVISION HISTORY
3/16-Rev. A to Rev. B
Change to Table 15 29
12/15-Rev. 0 to Rev. A
Changes to Table 1 3
Changes to Table 5 8
Deleted Figure 4; Renumbered Sequentially 14
Changes to Table 10 15
Changes to Table 14 29
Typical Performance Characterisitics 17
Full System 17
FET Input Amplifier 19
ADC Driver 22
Test Circuits 26
Theory of Operation 27
Kelvin Switching Techniques. 27
Applications Information 28
Configuring the ADA4350. 28
Selecting the Transimpedance Gain Paths Manually or Through the Parallel Interface 28
Selecting the Transimpedance Gain Paths Through the SPI Interface (Serial Mode) 28
SPICE Model 30
Transimpedance Amplifier Design Theory 32
Transimpedance Gain Amplifier Performance 34
The Effect of Low Feedback Resistor R_{Fx} 35
Using The T Network to Implement Large Feedback Resistor Values 36
Outline Dimensions 37
Ordering Guide 37

4/15—Revision 0: Initial Version

ADA4350

SPECIFICATIONS
 ± 5 V FULL SYSTEM

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ differential, unless otherwise specified.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Slew Rate	$\begin{aligned} & \text { Gain }(G)=-5, V_{\text {out }}=200 \mathrm{mV} \text { p-p } \\ & G=-5, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \text { Vout }=2 \mathrm{~V} \text { step, } 10 \% \text { to } 90 \% \end{aligned}$		$\begin{aligned} & 20 \\ & 12 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
HARMONIC PERFORMANCE Harmonic Distortion (HD2/HD3)	$\begin{aligned} & \mathrm{G}=-5, \mathrm{fc}_{\mathrm{c}}=100 \mathrm{kHz} \\ & \mathrm{G}=-5, \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & -95 /-104 \\ & -77 /-78 \end{aligned}$		dBc dBc
DC PERFORMANCE Input Bias Current	At $25^{\circ} \mathrm{C}$ At $85^{\circ} \mathrm{C}$		$\begin{aligned} & \pm 0.25 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection	Common mode Common mode Differential mode Common-mode rejection ratio (CMRR) $>80 \mathrm{~dB}$ $\begin{aligned} & \mathrm{CMRR}>68 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -4.5 \\ & -5 \\ & 92 \end{aligned}$	$\begin{aligned} & 100 \\ & 2 \\ & 3 \\ & \\ & 104 \end{aligned}$	$\begin{aligned} & +3.8 \\ & +3.9 \end{aligned}$	$G \Omega$ pF pF V V dB
OUTPUT CHARACTERISTICS Linear Output Current Short-Circuit Current Settling Time to 0.1%	Vout $=4 \mathrm{~V}$ p-p, 60 dB spurious-free dynamic range (SFDR) Sinking/sourcing $\mathrm{G}=-5, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step }$		$\begin{aligned} & 18 \\ & 43 / 76 \\ & 100 \end{aligned}$		mA rms mA ns
ANALOG POWER SUPPLY ($+\mathrm{V}_{\mathrm{s}},-\mathrm{V}_{\mathrm{s}}$) Operating Range Quiescent Current Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio	Enabled M1 disabled (see Figure 1) All disabled	3.3	$\begin{aligned} & 8.5 \\ & 7 \\ & 2 \\ & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	V mA mA $\mu \mathrm{A}$ dB dB
DIGITAL SUPPLIES Digital Supply Range Quiescent Current $+V_{s}$ to DGND Head Room	DVDD, DGND Enabled Disabled	3.3	50 0.6 ≥ 3.3	5.5	V $\mu \mathrm{A}$ $\mu \mathrm{A}$ V

土5 V FET INPUT AMPLIFIER

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, unless otherwise specified.
Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Gain Bandwidth Product Slew Rate Settling Time to 0.1\%	$\begin{aligned} & G=-5, V_{\text {Out }}=100 \mathrm{mV} \text { p-p } \\ & G=-5, V_{\text {OUT }}=2 \mathrm{~V}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step, } 10 \% \text { to } 90 \% \\ & \mathrm{G}=-5, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \text { step } \end{aligned}$		$\begin{aligned} & 26 \\ & 24 \\ & 175 \\ & 100 \\ & 28 \end{aligned}$		MHz MHz MHz V/ $\mu \mathrm{s}$ ns
NOISE/HARMONIC PERFORMANCE Harmonic Distortion (HD2/HD3) Input Voltage Noise	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{G}=-5 \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{G}=-5 \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -106 /-114 \\ & -83 /-93 \\ & 85 \\ & 5 \end{aligned}$		dBC dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Offset Current Open-Loop Gain	From $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ From $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ At $25^{\circ} \mathrm{C}$ At $85^{\circ} \mathrm{C}$ At $25^{\circ} \mathrm{C}$ At $85^{\circ} \mathrm{C}$ $V_{\text {OUT }}= \pm 2 \mathrm{~V}$	106	$\begin{aligned} & 15 \\ & 0.1 \\ & 0.1 \\ & \pm 0.25 \\ & \pm 8 \\ & \pm 0.1 \\ & \pm 0.5 \\ & 115 \end{aligned}$	$\begin{aligned} & 80 \\ & 1.6 \\ & 1.0 \\ & \pm 1 \\ & \pm 25 \\ & \pm 0.8 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ pA pA pA pA dB
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	Common mode Common mode Differential mode CMRR > 80 dB CMRR $>68 \mathrm{~dB}$ $V_{C M}= \pm 3 \mathrm{~V}$	$\begin{aligned} & -4.5 \\ & -5 \\ & 92 \end{aligned}$	$\begin{aligned} & 100 \\ & 2 \\ & 3 \\ & \\ & 115 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.8 \\ & +3.9 \end{aligned}$	G Ω pF pF V V V
OUTPUT CHARACTERISTICS Output Overdrive Recovery Time Output Voltage Swing Linear Output Current Short-Circuit Current	$V_{\text {OUT }}=V_{S} \pm 10 \%$ $G=+21, R_{F}=1 \mathrm{k} \Omega$, RL open measured at FBx $G=+21, R_{F}=100 \mathrm{k} \Omega$, R_{L} open measured at FBx $V_{\text {OUt }}=2 \mathrm{~V}$ p-p, 60 dB SFDR Sinking/sourcing	$\begin{aligned} & -3.6 \text { to }+3.9 \\ & -4.7 \text { to }+4.8 \end{aligned}$	$\begin{aligned} & 60 \\ & -4.05 \text { to }+4.07 \\ & -4.9 \text { to }+4.86 \\ & 18 \\ & 41 / 45 \end{aligned}$		ns V V mA rms mA
POWER SUPPLY Operating Range Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio		$\begin{aligned} & 3.3 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 109 \\ & 109 \end{aligned}$	12	V dB dB

± 5 V INTERNAL SWITCHING NETWORK AND DIGITAL PINS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-5 \mathrm{~V}$, unless otherwise specified. See Figure 1 for feedback and sampling switches notation.
Table 3.

[^0]
± 5 V ADC DRIVER

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-5 \mathrm{~V}$, unless otherwise specified. See Figure 1 for the P 1 and M 1 amplifiers. $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ when differential, and $\mathrm{R}_{\mathrm{L}}=500 \Omega$ when single-ended.

Table 4.

Parameter	Test Conditions/Comments ${ }^{1}$	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Bandwidth	When used differentially, $\mathrm{V}_{\text {out }}=0.1 \mathrm{Vp}$-p	38			MHz
	When used differentially, $\mathrm{V}_{\text {out }}=2.0 \mathrm{Vp}$-p	16			MHz
	When P 1 is used, $\mathrm{V}_{\text {out }}=50 \mathrm{mV} \mathrm{p-p}$	55			MHz
	When P1 is used, $\mathrm{V}_{\text {out }}=1.0 \mathrm{~V}$ p-p	17			MHz
	When M 1 is used, $\mathrm{V}_{\text {out }}=50 \mathrm{mV}$ p-p	45			MHz
	When M 1 is used, $\mathrm{V}_{\text {out }}=1.0 \mathrm{~V}$ p-p	21			MHz
Overdrive Recovery Time	Positive recovery/negative recovery for P1	200/180			ns
	Positive recovery/negative recovery for M1	100/100			ns
Slew Rate	When differentially used, $\mathrm{V}_{\text {out }}=2 \mathrm{~V}$ step	57			V/ $/ \mathrm{s}$
	When P1 or M1 is single-ended, $\mathrm{V}_{\text {out }}=1 \mathrm{~V}$ step	30			$\mathrm{V} / \mu \mathrm{s}$
Settling Time 0.1\%	When used differentially, $\mathrm{V}_{\text {out }}=2 \mathrm{~V}$ step	95			ns
	When P1 is used, $\mathrm{V}_{\text {out }}=1 \mathrm{~V}$ step	80			ns
	When M1 is used, Vout $=1 \mathrm{~V}$ step	80			ns
NOISE/DISTORTION PERFORMANCE					
Harmonic Distortion (HD2/HD3)	When used differentially, $\mathrm{fc}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{V}_{\text {out }}=4 \mathrm{Vp}-\mathrm{p}$	-105/-109			dBc
	When used differentially, $\mathrm{fc}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{Vout}_{\text {a }}=4 \mathrm{Vp}-\mathrm{p}$	-75/-73			dBc
	When P 1 is used, $\mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{V}_{\text {out }}=2 \mathrm{~V}$ p-p	-112/-108			dBc
	When P 1 is used, $\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}$	-75/-73			dBC
	When M 1 is used, $\mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{V}_{\text {out }}=2 \mathrm{~V} \mathrm{p}-\mathrm{p}$	-98/-103			dBC
	When M 1 is used, $\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{V}_{\text {out }}=2 \mathrm{Vp-p}$	-70/-69			dBc
Referred to Input (RTI) Voltage Noise	For $\mathrm{P} 1, \mathrm{f}=10 \mathrm{~Hz}$	55			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	For P1, f $=100 \mathrm{kHz}$	5			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Referred to Output (RTO) Voltage Noise	For P1 and M1, $\mathrm{f}=10 \mathrm{~Hz}$, measured at VOUT2	95			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	For P1 and M1, $\mathrm{f}=100 \mathrm{kHz}$, measured at VOUT2	16			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Current Noise	$\mathrm{f}=100 \mathrm{kHz}$, referred to P1	1.1			$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE					
Output Offset Voltage	Differential		0.125	0.5	mV
Output Offset Voltage Drift	Differential		0.7	13	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage	Single-ended, P1 only		50	180	$\mu \mathrm{V}$
	Single-ended, M1 only		40	180	$\mu \mathrm{V}$
Input Offset Voltage Drift	Single-ended, P1 only		0.2	4.75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Single-ended, M1 only		0.4	3.6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	P1 only at VIN1 pin		60	220	nA
	P1 only at RF1 pin		60	325	nA
	M1 at REF pin		60	200	nA
Input Offset Current	P1 only	102	60	260	nA
Open-Loop Gain	P1 only, $\mathrm{V}_{\text {out }}= \pm 2 \mathrm{~V}$		112		dB
Gain	M1 only	1.99	1.9996	2.01	V/V
Gain Error		-0.5		+0.5	
Gain Error Drift			0.6	1.9	ppm/ ${ }^{\circ} \mathrm{C}$
INPUT CHARACTERISTICS					
Input Resistance	VIN1 and REF		200		$\mathrm{M} \Omega$
Input Capacitance	VIN1 and REF		1.4		pF
Input Common-Mode Voltage Range		-5		+3.8	V
Common-Mode Rejection Ratio	For P1, $\mathrm{V}_{\text {cm }}= \pm 3.0 \mathrm{~V}$	82	100		dB

ADA4350

Parameter	Test Conditions/Comments ${ }^{1}$	Min	Typ	Max	Unit
OUTPUT CHARACTERISTICS					
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=$ no load, single-ended	± 4.8	± 4.83		V
	$R_{L}=500 \Omega$, single-ended	± 4.55	± 4.6		V
Output Common-Mode Voltage RangeLinear Output Current		-5		+3.8	V
	P1 or $\mathrm{M} 1, \mathrm{~V}_{\text {OUt }}=2 \mathrm{~V}$ p-p, 60 dB SFDR		18		mA rms
	Differential output, Vout $=4 \mathrm{~V}$ p-p, 60 dB SFDR		18		mA rms
Short Circuit Current	P1 or M1, sinking/sourcing		43/76		mA
Capacitive Load Drive	When used differentially at each VOUTx, 30\% overshoot, $V_{\text {out }}=200 \mathrm{mV}$ p-p		33		pF
	When $\mathrm{P} 1 / \mathrm{M} 1$ is used, 30% overshoot, $\mathrm{V}_{\text {out }}=100 \mathrm{mV}$ p-p		47		pF
POWER SUPPLY					
Operating Range		3.3		12	V
Positive Power Supply Rejection Ratio	For P1	90	106		dB
	For M1	86	100		dB
Negative Power Supply Rejection Ratio	For P1	80	100		dB
	For M1	78	90		dB

${ }^{1}$ P1 and M1 within this table refer to the amplifiers shown in Figure 1.

5 V FULL SYSTEM

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega$ differential, unless otherwise specified.
Table 5.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Slew Rate	$\begin{aligned} & G=-5, V_{\text {out }}=200 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{G}=-5, \mathrm{~V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step, } 10 \% \text { to } 90 \% \end{aligned}$		$\begin{aligned} & 15 \\ & 14 \\ & 30 \\ & \hline \end{aligned}$		MHz MHz V/ $\mu \mathrm{s}$
HARMONIC PERFORMANCE Harmonic Distortion (HD2/HD3) Input Voltage Noise	$\begin{aligned} & \mathrm{G}=-5, \mathrm{fc}=100 \mathrm{kHz} \\ & \mathrm{G}=-5, \mathrm{fc}=1 \mathrm{MHz} \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -85 /-94 \\ & -66 /-75 \\ & 92 \\ & 4.4 \end{aligned}$		dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Bias Current	At $25^{\circ} \mathrm{C}$ At $85^{\circ} \mathrm{C}$		$\begin{aligned} & \pm 0.35 \\ & \pm 8.5 \end{aligned}$	$\begin{aligned} & \pm 1.6 \\ & \pm 30 \end{aligned}$	pA pA
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection	$\begin{aligned} & \text { Common mode } \\ & \text { Common mode } \\ & \text { Differential mode } \\ & C M R R>80 \mathrm{~dB} \\ & \mathrm{CMRR}>68 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 0.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0 \\ & 88 \end{aligned}$	$\begin{aligned} & 100 \\ & 2 \\ & 3 \\ & \\ & 94 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.9 \end{aligned}$	$\begin{aligned} & \mathrm{G} \Omega \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Linear Output Current Short-Circuit Current Settling Time to 0.1\%	$V_{\text {out }}=1 \mathrm{~V}$ p-p, 60 dB SFDR Sinking/sourcing, $R_{L}<1 \Omega$ $\mathrm{G}=-5$, V out $=2 \mathrm{~V}$ step		$\begin{aligned} & 9 \\ & 41 / 63 \\ & 130 \\ & \hline \end{aligned}$		mA rms mA ns
POWER SUPPLY Operating Range Quiescent Current Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio	Enabled M1 disabled (see Figure 1) All disabled	3.3	8 6.5 2 86 80		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
DIGITAL SUPPLIES (DVDD, DGND) Digital Supply Range Quiescent Current +Vs to DGND Head Room	DVDD, DGND Enabled Disabled	3.3	$\begin{aligned} & 50 \\ & 0.6 \\ & \geq 3.3 \end{aligned}$	5.5	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \end{aligned}$

ADA4350

5 V FET INPUT AMPLIFIER

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, unless otherwise specified.
Table 6.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Gain Bandwidth Product Slew Rate Settling Time to 0.1\%	$\begin{aligned} & \mathrm{G}=-5, \mathrm{~V}_{\text {out }}=100 \mathrm{mV} \text { p-p } \\ & \mathrm{G}=-5, \mathrm{~V}_{\text {out }}=1 \mathrm{Vp-p} \\ & \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step, } 10 \% \text { to } 90 \% \\ & \mathrm{G}=-5, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$		$\begin{aligned} & 25 \\ & 24 \\ & 175 \\ & 56 \\ & 60 \end{aligned}$		MHz MHz MHz V/ $\mu \mathrm{s}$ ns
NOISE/HARMONIC PERFORMANCE Harmonic Distortion (HD2/HD3) Input Voltage Noise	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, V_{\text {OUT }}=1 \mathrm{Vp-p,G}=-5 \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=-5 \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -113 /-117 \\ & -82 /-83 \\ & 92 \\ & 4.4 \end{aligned}$		dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Offset Current Open-Loop Gain	From $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ From $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ At $25^{\circ} \mathrm{C}$ At $85^{\circ} \mathrm{C}$ At $25^{\circ} \mathrm{C}$ At $85^{\circ} \mathrm{C}$ $\mathrm{V}_{\text {OUt }}=1.5 \mathrm{~V}$ to 3.5 V	98	$\begin{aligned} & 25 \\ & 0.1 \\ & 0.05 \\ & \pm 0.35 \\ & \pm 8.5 \\ & \pm 0.25 \\ & \pm 0.4 \\ & 102 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 1.5 \\ & 1 \\ & \pm 1.6 \\ & \pm 30 \\ & \pm 1.25 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ pA pA pA pA dB
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	Common mode Common mode Differential mode CMRR $>80 \mathrm{~dB}$ CMRR $>68 \mathrm{~dB}$ $\mathrm{V}_{\mathrm{CM}}= \pm 0.5 \mathrm{~V}$	$\begin{aligned} & 0.5 \\ & 0 \\ & 88 \end{aligned}$	$\begin{aligned} & 100 \\ & 2 \\ & 3 \\ & \\ & 94 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.9 \end{aligned}$	G Ω pF pF V V dB
OUTPUT CHARACTERISTICS Output Overdrive Recovery Time Output Voltage Swing Linear Output Current Short-Circuit Current	$V_{\text {out }}=\mathrm{V}_{\mathrm{S}} \pm 10 \%$, positive/negative $G=+21, R_{F}=1 \mathrm{k} \Omega$, R_{L} open measured at FBx $\mathrm{G}=+21, \mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega$, R_{L} open measured at FBx $V_{\text {out }}=1 \mathrm{~V}$ p-p, 60 dB SFDR Sinking/sourcing	$\begin{aligned} & 1.15 \text { to } 3.46 \\ & 0.27 \text { to } 4.80 \end{aligned}$	$\begin{aligned} & 60 / 50 \\ & 0.86 \text { to } 3.66 \\ & 0.08 \text { to } 4.87 \\ & 10 \\ & 32 / 38 \end{aligned}$		ns V V mA rms mA
POWER SUPPLY Operating Range Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio		$\begin{aligned} & 3.3 \\ & 90 \\ & 86 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	12	V dB dB

5 V INTERNAL SWITCHING NETWORK AND DIGITAL PINS

$T_{A}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$, unless otherwise specified. See Figure 1 for sampling and feedback switches position.
Table 7.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FEEDBACK/SAMPLE ANALOG SWITCH						
Analog Signal Range			0		5	V
Switch On Resistance						
Feedback	Ron, fb	SO to $\mathrm{S} 2, \mathrm{~V} \mathrm{CM}=2.5 \mathrm{~V}$		308	390	Ω
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		382		Ω
		S3 to $\mathrm{S} 5, \mathrm{~V}$ СM $=2.5 \mathrm{~V}$		308	390	Ω
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		384		Ω
Sampling	Ron, s	S6 to S8, $\mathrm{V}_{\text {CM }}=2.5 \mathrm{~V}$		610	770	Ω
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		762		Ω
		S9 to S11, $\mathrm{V}_{\text {CM }}=2.5 \mathrm{~V}$		612	770	Ω
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		764		Ω
On-Resistance Match Between Channels						
Feedback Resistance	Δ Ron, $^{\text {f }}$	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		3	21	Ω
Sampling Resistance	$\Delta \mathrm{Ron}_{\text {, }}$	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		3	23	Ω
SWITCH LEAKAGE CURRENTS						
Sampling and Feedback Switch Off Leakage	$\mathrm{IS}_{\text {(OFF) }}$			± 0.4	± 1.2	PA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		± 30	± 80	PA
DYNAMIC CHARACTERISTICS						
Power-On Time	ton	DVDD $=3.3 \mathrm{~V}$	105			ns
Power-Off Time	toff	DVDD $=3.3 \mathrm{~V}$	65			ns
Off Isolation		$\mathrm{RL}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$				
Feedback Switches			-93			dB
Sampling Switches				-116		dB
Channel to Channel Crosstalk	$\mathrm{C}_{\text {Fb (0fF) }}$	$\mathrm{RL}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$		-83		dB
Worst Case Switch Feedback Capacitance (Switch Off)						pF
THRESHOLD VOLTAGES FOR DIGITAL INPUT PINS	$\mathrm{V}_{\text {IH }}$	EN, MODE, DGND, $\overline{\mathrm{LATCH}} / \mathrm{PO}$, SCLK/P1, SDO/P2, SDI/P3, $\overline{\mathrm{CS}} / \mathrm{P} 4^{1}$	2.01.5			
Input High Voltage		DVDD $=5 \mathrm{~V}$				V
		DVDD $=3.3 \mathrm{~V}$				V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	DVDD $=5 \mathrm{~V}$			1.4	V
		DVDD $=3.3 \mathrm{~V}$			1.0	V
DIGITAL SUPPLIES Digital Supply Range Quiescent Current $+\mathrm{V}_{\mathrm{s}}$ to DGND Head Room		DVDD, DGND	3.3			
					5.5	V
		Enabled		50		$\mu \mathrm{A}$
		Disabled		0.6		$\mu \mathrm{A}$
				≥ 3.3		V

[^1]ADA4350

5 V ADC DRIVER

$T_{A}=25^{\circ} \mathrm{C},+\mathrm{V}_{S}=5 \mathrm{~V},-\mathrm{V}_{S}=0 \mathrm{~V}$, unless otherwise specified. See Figure 1 for the P 1 and M 1 amplifiers, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ when differential, and $\mathrm{R}_{\mathrm{L}}=$ 500Ω when single-ended.

Table 8.

Parameter	Test Conditions/Comments ${ }^{1}$	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Bandwidth	When used differentially, $\mathrm{V}_{\text {out }}=0.1 \mathrm{Vp}$-p		33		MHz
	When used differentially, $\mathrm{V}_{\text {out }}=2.0 \mathrm{Vp}-\mathrm{p}$		16		MHz
	When P 1 is used, $\mathrm{V}_{\text {out }}=50 \mathrm{mV}$ p-p		47		MHz
	When P1 is used, Vout $=1.0 \mathrm{~V}$ p-p		16		MHz
	When M 1 is used, $\mathrm{V}_{\text {Out }}=50 \mathrm{mV}$ p-p		37		MHz
	When M 1 is used, $\mathrm{V}_{\text {out }}=1.0 \mathrm{~V} \mathrm{p}-\mathrm{p}$		18		MHz
Overdrive Recovery Time	For P1, positive recovery/negative recovery		200/200		ns
	For M1, positive recovery/negative recovery		140/120		ns
Slew Rate	When differentially used, $\mathrm{V}_{\text {out }}=2 \mathrm{~V}$ step		37		V/ $/ \mathrm{s}$
	When P1 or M1 is single-ended, $\mathrm{V}_{\text {out }}=1 \mathrm{~V}$ step		20		$\mathrm{V} / \mu \mathrm{s}$
Settling Time 0.1\%	When used differentially, $\mathrm{V}_{\text {out }}=2 \mathrm{~V}$ step		75		ns
	When P1 is used, $\mathrm{V}_{\text {out }}=1 \mathrm{~V}$ step		60		ns
	When M1 is used, $\mathrm{V}_{\text {out }}=1 \mathrm{~V}$ step		60		ns
NOISE/DISTORTION PERFORMANCE Harmonic Distortion (HD2/HD3)					
	When used differentially, $\mathrm{fc}_{\mathrm{c}}=100 \mathrm{kHz}$, $\mathrm{V}_{\text {out }}=1 \mathrm{Vp-p}$		-117/-116		dBC
	When used differentially, $\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$, $V_{\text {out }}=1 \mathrm{~V}$ p-p		-80/-85		dBc
	When P 1 is used, $\mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{V}_{\text {out }}=500 \mathrm{mV}$ p-p		-108/-115		dBC
	When P 1 is used, $\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$, Vour $=500 \mathrm{mV}$ p-p		-80/-83		dBC
	When M 1 is used, $\mathrm{fc}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{V}_{\text {out }}=500 \mathrm{mV}$ p-p		-103/-107		dBC
	When M 1 is used, $\mathrm{fc}_{\mathrm{c}}=1 \mathrm{MHz}$, Vout $=500 \mathrm{mV}$ p-p		-75/-78		dBC
Referred to Input (RTI) Voltage Noise	For $\mathrm{P} 1, \mathrm{f}=10 \mathrm{~Hz}$		60		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	For P1, f $=100 \mathrm{kHz}$		5.2		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Referred to Output (RTO) Voltage Noise	For P1 and $\mathrm{M} 1, \mathrm{f}=10 \mathrm{~Hz}$, measured at VOUT2		140		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	For P1 and M1, $\mathrm{f}=100 \mathrm{kHz}$, measured at VOUT2		18		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Current Noise	$\mathrm{f}=100 \mathrm{kHz}$, referred to P1		1.1		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE					
Output Offset Voltage	Differential		0.15	0.75	mV
Input Offset Voltage Drift	Differential		0.6	16	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Output Offset Voltage	Single-ended, P1 only		60	275	$\mu \mathrm{V}$
	Single-ended, M1 only		70	250	$\mu \mathrm{V}$
Input Offset Voltage Drift	Single-ended, P1 only		0.1	5.9	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Single-ended, M1 only		0.3	4.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	P1 only at VIN1 pin		60	230	nA
	P1 only at RF1 pin		60	350	nA
	M1 only at REF pin		60	200	nA
Input Offset Current	P1 only		60	270	$n \mathrm{~A}$
Open-Loop Gain	P1 only, Vout $=1.5 \mathrm{~V}$ to 3.5 V	94	100		dB
Gain	M1 only	1.99	1.9995	2.01	V/V
Gain Error		-0.5		+0.5	\%
Gain Error Drift			0.6	3.4	ppm $/{ }^{\circ} \mathrm{C}$

Parameter	Test Conditions/Comments ${ }^{1}$	Min	Typ	Max	Unit
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	VIN1 and REF VIN1 and REF For $\mathrm{P} 1, \mathrm{~V}_{\text {сM }}= \pm 0.5 \mathrm{~V}$	$\begin{aligned} & 0 \\ & 84 \end{aligned}$	$\begin{aligned} & 200 \\ & 1.4 \\ & 94 \end{aligned}$	3.9	$\mathrm{M} \Omega$ pF V dB
OUTPUT CHARACTERISTICS Output Voltage Swing Output Common-Mode Voltage Range Linear Output Current Short-Circuit Current Capacitive Load Drive	$R_{L}=$ no load, single-ended $R \mathrm{~L}=500 \Omega$, single-ended For P1or M1, Vout $=1 \mathrm{~V}$ p-p, 60 dB SFDR Differential output, $\mathrm{V}_{\text {out }}=1 \mathrm{Vp}$-p, 60 dB SFDR For P1 or M1, sinking/sourcing When used differentially at each VOUTx, 30% overshoot, Vout $=100 \mathrm{mV}$ p-p When P1/M1 is used, 30% overshoot, $V_{\text {OUT }}=50 \mathrm{mV}$ p-p	$\begin{aligned} & 0.15 \text { to } 4.85 \\ & 0.28 \text { to } 4.72 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.125 \text { to } 4.875 \\ & 0.24 \text { to } 4.76 \\ & 4 \\ & 40 \\ & 41 / 63 \\ & 33 \\ & 47 \end{aligned}$	3.9	V V V mA rms mA rms mA pF pF
POWER SUPPLY Operating Range Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio	For P1 For M1 For P1 For M1	$\begin{aligned} & 3.3 \\ & 86 \\ & 80 \\ & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & 104 \\ & 94 \\ & 92 \\ & 88 \end{aligned}$	12	V dB dB dB dB

[^2]
TIMING SPECIFICATIONS

All input signals are specified with $t_{R}=t_{F}=2 \mathrm{~ns}(10 \%$ to 90% of DVDD$)$ and timed from a voltage threshold level of $\mathrm{V}_{\mathrm{TH}}=1.3 \mathrm{~V}$ at $\operatorname{DVDD}=3.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{TH}}=1.7 \mathrm{~V}$ at $\mathrm{DVDD}=5 \mathrm{~V}$. Guaranteed by characterization; not production tested. See Figure 2 and Figure 3.

Table 9.

Parameter	Description ${ }^{1}$	DVDD = 3.3 V		DVDD = 5 V		
		Min	Max	Min	Max	Unit
t_{1}	SCLK period.	20		20		ns
t_{2}	SCLK positive pulse width.	10		10		ns
t_{3}	SCLK negative pulse width.	10		10		ns
t_{4}	$\overline{\mathrm{CS}}$ setup time. The time required to begin sampling data after $\overline{\mathrm{CS}}$ goes low.	1		1		ns
t_{5}	$\overline{\mathrm{CS}}$ hold time. The amount of time required for $\overline{\mathrm{CS}}$ to be held low after the last data bit is sampled before bringing $\overline{\mathrm{CS}}$ high. Data is latched on the $\overline{\mathrm{CS}}$ rising edge. If $\overline{\mathrm{LATCH}}$ is held low, data is also applied on the $\overline{\mathrm{CS}}$ rising edge.	7		5		ns
t_{6}	$\overline{C S}$ positive pulse width. The amount of time required between consecutive words.	2		1		ns
t_{7}	Data setup time. The amount of time the data bit (SDI) must be set before sampling on the falling edge of SCLK.	1		1		ns
t_{8}	Data hold time. The amount of time SDI must be held after the falling edge of SCLK for valid data to be sampled.	2		2		ns
t_{9}	Data latched to the internal switches updated. The amount of time it takes from the latched data being applied until the internal switches are updated. $\overline{\mathrm{LATCH}}$ disabled referenced from the rising edge of $\overline{\mathrm{CS}}$. $\overline{\text { LATCH }}$ enabled referenced from the falling edge of $\overline{\mathrm{LATCH}}$.		145		140	ns
t_{10}	$\overline{\text { LATCH }}$ negative pulse width.	3		3		ns
$\mathrm{t}_{11}{ }^{2}$	SCLK rising edge to SDO valid. The amount of time between the SCLK rising edge and the valid SDO transitions ($\mathrm{CL}_{\text {soo }}{ }^{3}=20 \mathrm{pF}$).		15		10	ns
t_{12}	$\overline{\mathrm{CS}}$ rising edge to the SCLK falling edge. The amount of time required to prevent a $25^{\text {th }}$ SCLK edge from being recognized (only 24 bits allowed for valid word).	1		1		ns

${ }^{1}$ When referring to a single function of a multifunction pin, only the portion of the pin name that is relevant to the specification is listed. For full pin names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.
${ }^{2}$ This is while in daisy-chain mode and in readback mode.
${ }^{3} \mathrm{CL}$ soo is the capacitive load on the SDO output.

Timing Diagrams for Serial Mode

Figure 2. Write Operation

Figure 3. Read Operation

ABSOLUTE MAXIMUM RATINGS

Table 10.

Parameter	Rating
Analog Supply Voltage	14 V
Digital Supply Voltage	5.5 V
Power Dissipation	See Figure 4
Common-Mode Input Voltage	$\pm \mathrm{Vs} \pm 0.3 \mathrm{~V}$
Differential Input Voltage	$\pm 0.7 \mathrm{~V}$
Input Current (IN-N, IN-P, VIN1, RF1, and REF)	20 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst case conditions, that is, θ_{JA} is specified for a device soldered in a circuit board for surfacemount packages. Table 11 lists the $\theta_{\text {IA }}$ for the ADA4350.

Table 11. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
28-Lead TSSOP	72.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation for the ADA4350 is limited by the associated rise in junction temperature (T_{J}) on the die. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the properties of the plastic change. Even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4350. Exceeding a junction temperature of $175^{\circ} \mathrm{C}$ for an extended period can result in changes in silicon devices, potentially causing degradation or loss of functionality.

The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is the sum of the quiescent power dissipation and the power dissipated in the die due to the ADA4350 output load drive.

The quiescent power dissipation is the voltage between the supply pins ($\pm \mathrm{V}_{\mathrm{s}}$) multiplied by the quiescent current (I_{s}).

$$
P_{D}=\text { Quiescent Power }+(\text { Total Drive Power }- \text { Load Power })
$$

$$
P_{D}=\left(\pm V_{S} \times I_{S}\right)+\left(\frac{ \pm V_{S}}{2} \times \frac{V_{O U T}}{R_{L}}\right)-\frac{V_{O U T}^{2}}{R_{L}}
$$

Consider rms output voltages. If R_{L} is referenced to $-V_{S}$, as in single-supply operation, the total drive power is $+\mathrm{V}_{s} \times$ Iout. If the rms signal levels are indeterminate, consider the worst case, when $V_{\text {out }}=+V_{S} / 4$ for R_{L} to midsupply for dual supplies and $\mathrm{V}_{\text {out }}=+\mathrm{V}_{\mathrm{S}} / 2$ for single supply.

$$
P_{D}=\left(+V_{S} \times I_{S}\right)+\frac{\left(V_{O U T}\right)^{2}}{R_{L}}
$$

Airflow increases heat dissipation, effectively reducing θ_{JA}. In addition, more metal directly in contact with the package leads and exposed pad from metal traces, through holes, ground, and power planes reduces θ_{JA}.
Figure 4 shows the maximum safe power dissipation in the package vs. the ambient temperature on a JEDEC standard 4 -layer board. $\theta_{J A}$ values are approximations.

Figure 4. Maximum Power Dissipation vs. Ambient Temperature for a 4-Layer Board

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration
Table 12. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	SWB_OUT	Switch Group B (S3 to S5 and S9 to S11) Output.
2	RF1	Feedback Resistor for Output Differential Amplifier.
3	VOUT1	Differential Amplifier Output 1.
4	FB5	Feedback Pin 5 for FET Input Amplifier.
5	FB4	Feedback Pin 4 for FET Input Amplifier.
6	FB3	Feedback Pin 3 for FET Input Amplifier.
7	FB2	Feedback Pin 2 for FET Input Amplifier.
8	FB1	Feedback Pin 1 for FET Input Amplifier.
9	FB0	Feedback Pin 0 for FET Input Amplifier.
10	IN-N	FET Input Amplifier Inverting Input.
11	IN-P	FET Input Amplifier Noninverting Input.
12	SWA_IN	Switch Group A (S0 to S2 and S6 to S8) Input.
13	SWB_IN	Switch Group B (S3 to S5 and S9 to S11) Input.
14	- VS 2	Analog Negative Supply.
15	+VS	Analog Positive Supply.
16	EN	Enable Pin.
17	MODE	Mode Pin. Use this pin to switch between the SPI interface and the parallel interface.
18	DGND	Digital Ground.
19	LATCH/PO	Latch Bit in the Serial Mode (LATCH). Parallel Data Bit 0 in parallel mode (P0).
20	SCLK/P1	Digital Clock in Serial Mode (SCLK). Parallel Data Bit 1 in parallel mode (P1).
21	SDO/P2	Serial Data Out in Serial Mode (SDO). Parallel Data Bit 2 in parallel mode (P2).
22	SDI/P3	Serial Data In in Serial Mode (SDI). Parallel Data Bit 3 in parallel mode (P3).
23	CS/P4	Select Bit in Serial Mode (CS). Parallel Data Bit 4 in parallel mode (P4).
24	DVDD	Digital Positive Supply.
25	REF	Reference for the ADC Driver at M1.
26	VOUT2	Differential Amplifier Output 2.
27	SWA_OUT	Switch Group A (S0 to S2 and S6 to S8) Output.
28	VIN1	Differential Amplifier Noninverting Input.

TYPICAL PERFORMANCE CHARACTERISITICS

FULL SYSTEM

These plots are for the full system, which includes the FET input amplifier, the switching network, and the ADC driver. Unless otherwise stated, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ differential. For $\mathrm{Vs}= \pm 5 \mathrm{~V}, \mathrm{DVDD}=+5 \mathrm{~V}$, and for $\mathrm{Vs}=+5 \mathrm{~V}($ or $\pm 2.5 \mathrm{~V}), \mathrm{DVDD}=+3.3 \mathrm{~V}$.

Figure 6. Small Signal Frequency Response for Various Supplies,
See Test Circuit in Figure 49

Figure 7. Frequency Response for Various Voltage Outputs, See Test Circuit in Figure 49

Figure 8. Large Signal Step Response, $G=-5$ for Various Supplies

Figure 9. Harmonic Distortion vs. Frequency for Various Supplies, See Test Circuit in Figure 48

Figure 10. Input Referred Voltage Noise vs. Frequency

Figure 11. Supply Current vs. Temperature at Different Modes

Figure 12. PSRR vs. Frequency

Figure 13. 0.1\% Settling Time, See Test Circuit in Figure 49

Figure 14. Switch On-Resistance vs. Common-Mode Voltage at Switches for Various Temperature

FET INPUT AMPLIFIER

Unless otherwise stated, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. For $\mathrm{Vs}= \pm 5 \mathrm{~V}, \mathrm{DVDD}=+5 \mathrm{~V}$, and for $\mathrm{Vs}= \pm 2.5 \mathrm{~V}, \mathrm{DVDD}=+3.3 \mathrm{~V}$.

Figure 15. Small Signal Frequency Response for Various Gains, $V_{S}= \pm 5$ V, See Test Circuit Diagrams in Figure 50 and Figure 51

Figure 16. Small Signal Frequency Response for Various Gains, $V_{s}=5 \mathrm{~V}$, See Test Circuit Diagrams in Figure 50 and Figure 51

Figure 17. Large Signal Frequency Response for Various Gains, Vs $= \pm 5$ V, See Test Circuit Diagrams in Figure 50 and Figure 51

Figure 18. Large Signal Frequency Response for Various Gains, $V_{S}=5 \mathrm{~V}$, See Test Circuit Diagrams in Figure 50 and Figure 51

Figure 19. Large Signal Step Response for Various Supplies, $G=-5$

Figure 20. 0.1\% Settling Time

Figure 21. Distortion (HD2/HD3) vs. Frequency, $G=-5$

Figure 22. Input Voltage Noise

Figure 23. Input Offset Voltage

Figure 24. Input Offset Voltage Drift

Figure 25. Open-Loop Gain and Phase vs. Frequency

Figure 26. CMRR vs Frequency

Data Sheet
 ADA4350

Figure 27. PSRR vs Frequency

Figure 28. Output Overdrive Recovery when Used as an Amplifier

ADC DRIVER

Unless stated otherwise, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ differential, and $\mathrm{R}_{\mathrm{L}}=500 \Omega$ when single-ended. For $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{DVDD}=+5 \mathrm{~V}$, and for $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}($ or $\pm 2.5 \mathrm{~V})$, DVDD $=+3.3 \mathrm{~V}$.

Figure 29. Small Signal Frequency Response, $V_{s}=5 \mathrm{~V}$

Figure 30. Large Signal Frequency Response, $V_{s}=5 \mathrm{~V}$

Figure 31. Small Signal Frequency Response, $V_{s}= \pm 5 \mathrm{~V}$

Figure 32. Large Signal Frequency Response, $V_{s}= \pm 5 \mathrm{~V}$

Figure 33. Large Signal Step Response (Single-Ended Output), $V_{s}= \pm 5 \mathrm{~V}$

Figure 34. Large Signal Step Response (Differential Output), $V_{S}= \pm 5 \mathrm{~V}$

Figure 35. Large Signal Step Response (Single-Ended Output), $V_{S}= \pm 2.5 \mathrm{~V}$

Figure 36. Large Signal Step Response (Differential Output), $V_{s}= \pm 2.5 \mathrm{~V}$

Figure 37. Harmonic Distortion vs. Frequency

Figure 38. Differential Output Offset Voltage

Figure 39. Differential Output Offset Voltage Drift

Figure 40. Single-Ended Output Offset Voltage

Figure 41. Single-Ended Offset Voltage Drift

Figure 42. CMRR vs. Frequency

Figure 43. Output Overdrive Recovery (P1 Only)

Figure 44. Output Overdrive Recovery (M1 Only)

Figure 45. PSRR vs. Frequency (P1 Only)

Figure 46. Input Referred Voltage Noise vs. Frequency, P1 Only, See Test Circuit Diagram in Figure 52

Figure 47. Output Referred Voltage Noise vs. Frequency, P1 and M1, See Test Circuit Diagram in Figure 53

TEST CIRCUITS

Figure 48. Harmonic Distortion for Full System

Figure 49. Full System Measurement for Other Parameters

Figure 50. Frequency Response for FET Input Amplifier, Noninverting Gain Configuration

Figure 51. Frequency Response for FET Input Amplifier, Inverting Gain Configuration

Figure 52. Input Referred Voltage Noise for P1

Figure 53. Output Referred Voltage Noise for P1 and M1

ADA4350

THEORY OF OPERATION

KELVIN SWITCHING TECHNIQUES

Traditional gain selectable amplifiers use analog switches in a feedback loop to connect discrete external resistors and capacitors to the inverting input by selecting the appropriate feedback path. This approach introduces several errors due to the nonideal nature of the analog switches in the loop. For example, the on-resistance of the analog switch causes voltage and temperature dependent gain errors, while the leakage current causes offset errors, especially at high temperature. The Kelvin switching technique solves this problem by introducing two switches in each gain selection loop, one to connect the transimpedance/ op amp output to the feedback network, and the other to connect the feedback network output to the downstream components. Figure 54 shows a programmable gain transimpedance amplifier with Kelvin switching.

Figure 54. Programmable Gain Transimpedance Amplifier with Kelvin Switching

Although this technique requires using twice as many switches, the voltage (Vx) in the center node is no longer switch dependent; it is only dependent on the current across the selected resistor (see Equation 1 through Equation 3).

$$
\begin{align*}
& V_{\text {OUT }}=-I_{\text {PHOTO }} \times\left(R_{F 2}+R_{S I B}\right) \tag{1}\\
& V 1=V_{\text {OUT }} \times\left(R_{F 2} /\left(R_{F 2}+R_{S 1 B}\right)\right) \tag{2}
\end{align*}
$$

Substituting Equation 1 into Equation 2,

$$
\begin{equation*}
V 1=-I_{\text {PНото }} \times R_{F 2} \tag{3}
\end{equation*}
$$

where:
Vout is the output of the first amplifier.
$I_{\text {Рното }}$ is the current from the photodiode.
$R_{F 2}$ is the feedback resistor of Transimpedance Path 2.
$R_{S I B}$ is the switch resistance of the S1B switch.
The switches shown on the right (S2A and S2B) in Figure 54 only have a small output impedance and contribute negligible error if the amplifier drives a high impedance load. In the case of the ADA4350, the high impedance load is the integrated ADC driver.

APPLICATIONS INFORMATION

CONFIGURING THE ADA4350

See the EVAL-ADA4350RUZ-P user guide for details on the basic configuration of the ADA4350, and how to use the evaluation board. For more details on configuring the ADC driver in a different gain setting, see the ADA4941-1 data sheet.
The gain settings of the ADA4350 can be chosen via the SPI interface or manually through a 5-lead DIP switch.

SELECTING THE TRANSIMPEDANCE GAIN PATHS MANUALLY OR THROUGH THE PARALLEL INTERFACE

In the manual mode (or parallel mode), only five out of the six transimpedance paths can be accessed (FB0 to FB4). Figure 55 shows the simplified schematics of the ADA4350 and the positions of FB0 to FB4. In this example, the first two feedback paths (FB0 and FB1) are configured as two different transimpedance gain paths.
To operate in manual mode or in parallel mode, set the EN pin (Pin 16) and the MODE pin (Pin 17) to Logic 1. In this mode, Pin 19 to Pin 23 represent P0 through P4, respectively. To select one gain, set the corresponding Px pin to Logic 1, and set all other Px pins to Logic 0 . Table 13 shows the relationship between the gain select switches (P 0 through P 4) and the gain path selected.

Setting more than one Px pin to Logic 1 results in connecting the selected gain paths in parallel.

Table 13. Manual Mode or Parallel Mode Operation

Bit On	Switch Closed	Gain Path Selected
P0	S0 and S6	FB0
P1	S1 and S7	FB1
P2	S2 and S8	FB2
P3	S3 and S9	FB3
P4	S4 and S10	FB4

SELECTING THE TRANSIMPEDANCE GAIN PATHS THROUGH THE SPI INTERFACE (SERIAL MODE)

For serial mode operation, set the EN pin (Pin 16) to Logic 1 and the MODE pin (Pin 17) to Logic 0. In serial mode, Pin 19 is LATCH, Pin 20 is SCLK, Pin 21 is SDO, Pin 22 is SDI, and Pin 23
is $\overline{\mathrm{CS}}$. Serial mode operation uses a 24 -bit command to configure each individual switch, S 0 through S 11 , as well as additional options. Table 14 shows the 24 -bit map used in serial mode operation. Table 15 shows the example codes that select the various transimpedance gain paths.
Multifunction pin names may be referenced by their relevant function only.

Table 14. 24-Bit Map Used in Serial Mode Operation

Bit No.	Function	Default Setting
0	S0 on/off control. Write 1 to this bit to close Switch S0.	0
1	S1 on/off control. Write 1 to this bit to close Switch S1.	0
2	S2 on/off control. Write 1 to this bit to close Switch S2.	0
3	S3 on/off control. Write 1 to this bit to close Switch S3.	0
4	S4 on/off control. Write 1 to this bit to close Switch S4.	0
5	S5 on/off control. Write 1 to this bit to close Switch S5.	0
6	S6 on/off control. Write 1 to this bit to close Switch S6.	0
7	S7 on/off control. Write 1 to this bit to close Switch S7.	0
8	S8 on/off control. Write 1 to this bit to close Switch S8.	0
9	S9 on/off control. Write 1 to this bit to close Switch S9.	0
10	S10 on/off control. Write 1 to this bit to close Switch S10.	0
11	S11 on/off control. Write 1 to this bit to close Switch S11.	0
12	Reserved. Set to logic low.	0
13^{1}	Optional internal 1 pF feedback capacitor between the inverting input and the output of the amplifier. Write 1 to this bit to turn the capacitor on.	0
14	Disable the SDO pin. Write 1 to this bit to disable the SDO pin.	0
15	Disable the M1 amplifier. Write 1 to this bit to disable the M1 amplifier.	0
16	Reserved. Set to logic low.	0
17	Reserved. Set to logic low.	0
18	Reserved. Set to logic low.	0
19	Reserved. Set to logic low.	0
20	Reserved. Set to logic low.	0
21	Reserved. Set to logic low.	0
22	Reserved. Set to logic low.	0
23	Read/write bit. Set to 1 to read and set to 0 to write.	0

[^3]Table 15. Serial Mode Operation

Command (Hex Code Format, B23...B0)	Switch Closed	Gain Path Selected
000041 (MSB Side)	S0 and S6	FB0
002041	S0 and S6	FB0, optional internal feedback capacitor on
000082	S1 and S7	FB1
000104	S2 and S8	FB2
000208	S3 and S9	FB3
000410	S4 and S10	FB4
000820	S5 and S11	FB5

SPICE MODEL

The SPICE model only supports parallel mode operation.
Pin P5 enables parallel mode and allows full switching network functionality.

The EN and MODE inputs are internally set to high and low, respectively, and are not accessible in this model. Figure 56 shows the recommended symbol pins when creating the ADA4350 symbol in the SPICE simulator.

Table 16. Model Pin Descriptions

Symbol Pin	Model Node	Pin No.	Mnemonic
1	N10	10	IN_N
2	N11	11	IN_P
3	VCC	15	VCC
4	VEE	14	VEE
5	VDD	24	DVDD
6	DGND	18	DGND
7	N12	12	SWA_IN
8	N13	13	SWB_IN
9	PO	19	LATCH/P0
10	P1	20	SCLK/P1
11	P2	21	SDO/P2
12	P3	22	SDI/P3
13	P5	23	CS/P4
14	N25	Not applicable	P5
15	N26	25	REF
16	N3	26	VOUT2
17	N2	3	VOUT1
18	N28	2	RF1
19	27	28	VIN1
20	1	27	SWA_OUT
21	4	1	SWB_OUT
22	5	4	FB5
23	6	5	FB4
24	7	6	FB3
25		7	FB2
27		8	FB1

TRANSIMPEDANCE AMPLIFIER DESIGN THEORY

Because its low input bias current minimizes the dc error at the preamp output, the ADA4350 works well in photodiode preamp applications. In addition, its high gain bandwidth product and low input capacitance maximizes the signal bandwidth of the photodiode preamp. Figure 58 shows the transimpedance amplifier model of the ADA4350.

Figure 58. Transimpedance Amplifier Model of the ADA4350
The basic transfer function in Equation 4 describes the transimpedance gain of the photodiode preamp.

$$
\begin{equation*}
V_{\text {OUT }}=\frac{I_{\text {Рното }} \times R_{F}}{1+s C_{F} R_{F}} \tag{4}
\end{equation*}
$$

where:
$I_{\text {Рното }}$ is the output current of the photodiode.
R_{F} is the feedback resistor.
C_{F} is the feedback capacitance.
The signal bandwidth is $1 /\left(R_{F} \times C_{F}\right)$, as determined by Equation 4 . In general, set R_{F} such that the maximum attainable output voltage corresponds to the maximum diode current, Iрното, allowing the use of the full output swing.
The signal bandwidth attainable with this preamp is a function of R_{F}, the gain bandwidth product ($f_{\text {GBW }}$) of the amplifier, and the total capacitance at the amplifier summing junction, including C_{S} and the amplifier input capacitance of C_{D} and $C_{M} . R_{F}$ and the total capacitance produce a pole with the loop frequency $\left(\mathrm{f}_{\mathrm{p}}\right)$.

$$
\begin{equation*}
f_{P}=1 / 2 \pi R_{F} C_{s} \tag{5}
\end{equation*}
$$

With the additional pole from the open-loop response of the amplifier, the two-pole system results in peaking and instability due to an insufficient phase margin (see gray lines for the noise gain and phase in Figure 59).
Adding C_{F} to the feedback loop creates a zero in the loop transmission that compensates for the effect of the input pole, which stabilizes the photodiode preamp design because of the increased phase margin (see the gray lines for the noise gain and phase in Figure 60). It also sets the signal bandwidth, f_{Z} (see the I to V gain line for the signal gain in Figure 60). The signal bandwidth and the zero frequency, f_{z}, are determined by

$$
\begin{equation*}
f_{z}=\frac{1}{2 \pi R_{F} C_{F}} \tag{6}
\end{equation*}
$$

Equating the zero frequency, f_{z}, with the f_{x} frequency maximizes the signal bandwidth with a 45° phase margin. Calculate f_{x} as follows because f_{x} is the geometric mean of f_{P} and f_{GB} :

$$
\begin{equation*}
f_{x}=\sqrt{f_{P} \times f_{G B W}} \tag{7}
\end{equation*}
$$

By combining Equation 5, Equation 6, and Equation 7, the C_{F} value that produces f_{x} is defined by

$$
\begin{equation*}
C_{F}=\sqrt{\frac{C_{S}}{2 \pi \times R_{F} \times f_{G B W}}} \tag{8}
\end{equation*}
$$

The frequency response in this case shows approximately 2 dB peaking and 15% overshoot. Doubling C_{F} and cutting the bandwidth in half results in a flat frequency response with approximately 5% transient overshoot.

Figure 59. Noise Gain and Phase Bode Plot of the Transimpedance Amplifier Design Without Compensation

Figure 60. Signal and Noise Gain and Phase of the Transimpedance Amplifier Design with Compensation

The dominant output noise sources in the transimpedance amplifier design are the input voltage noise of the amplifier, $\mathrm{V}_{\text {Noise, }}$ and the resistor noise due to R_{F}. The effect due to the current noise is negligible in comparison. The gray line in Figure 60 shows the noise gain and phase over frequencies for the transimpedance amplifier. The noise bandwidth is at the f_{N} frequency, and is calculated by

$$
\begin{equation*}
f_{N}=\frac{f_{G B W}}{\left(C_{S}+C_{F}\right) / C_{F}} \tag{9}
\end{equation*}
$$

Table 17 shows the dominant noise sources (R_{F} and $\mathrm{V}_{\text {NoISE }}$) for the transimpedance amplifier when it has a 45° phase margin for the maximum bandwidth, and in this case, $\mathrm{f}_{\mathrm{z}}=\mathrm{f}_{\mathrm{X}}=\mathrm{f}_{\mathrm{N}}$.

Table 17. RMS Noise Contributions of Transimpedance Amplifier

Contributor	Expression
R_{F}	$\sqrt{4 k T \times R_{F} \times f_{N} \times \frac{\pi}{2}}$
$\mathrm{~V}_{\text {NOISE }}$	$V_{\text {NOISE }} \times \frac{\left(C_{S}+C_{M}+C_{F}+2 C_{D}\right)}{C_{F}} \times \sqrt{\frac{\pi}{2} \times f_{N}}$

 NOTES

1. R R $_{\text {Fx }}$ ARE THE FEEDBACK RESISTORS SPECIFIC TO EACH TRANSIMPEDANCE PATH. C $\mathrm{C}_{\text {Fx }}$ ARE THE FEEDBACK
CAPACITORS SPECIFIC TO EACH TRANSIMPEDANCE PATH.

Figure 61. ADA4350 Configured as a Transimpedance Amplifier with Five Different Gains

TRANSIMPEDANCE GAIN AMPLIFIER PERFORMANCE

Figure 61 shows the ADA4350 configured as a transimpedance amplifier with five different gains. The photodiode sensor capacitance, C_{D}, varies from 91 pF to 100 nF to showcase the transimpedance gain performance at various frequency. Figure 62 to Figure 65 shows the transimpedance vs. frequency at different C_{D} settings. Note that the compensation capacitors, $C_{F 0}$ to $C_{F 4}$, correct for the inherent instability of the transimpedance configuration. Capacitors chosen were such that the transimpedance gain response compensates for the maximum bandwidth and is close to having a 45° phase margin.

Figure 63. Transimpedance vs. Frequency, $C_{D}=1 n F$

Figure 64. Transimpedance vs. Frequency, $C_{D}=10 \mathrm{nF}$

Figure 65. Transimpedance vs. Frequency, $C_{D}=100 \mathrm{nF}$

THE EFFECT OF LOW FEEDBACK RESISTOR R F_{Fx}

As the load of the transimpedance amplifier increases, excessive peaking in the frequency response can be observed when the R_{Fx} value is too small. This peaking can persist even when excessive C_{Fx} overcompensates for it. Figure 66 shows the ADA4350 configured with a photodiode capacitance value of 91 pF and a $1 \mathrm{k} \Omega$ transimpedance load. Figure 67 shows the normalized frequency response of this configuration. By decreasing R_{F} from 500Ω to 68Ω, the peaking in the frequency response increases progressively. The large peaking translates to a huge overshoot in the pulse response, which is an undesirable result.

Figure 66. Transimpedance Amplifier Circuit

Figure 67. Normalized Frequency Response with Decreasing RF (See Figure 66)
To mitigate this effect, use an additional snubber circuit at the output of the FET input amplifier, as shown in Figure 68. In this configuration, the feedback resistor $\left(\mathrm{R}_{\mathrm{Ex}}\right)$ is 68Ω, and the capacitance of the photodiode is 40 pF .

Figure 68. Snubber Circuit Added to Mitigate Peaking
Figure 69 shows the effect of various snubber circuits clamping down the peaking. Without the snubber circuit, there is 6 dB of peaking when an overcompensated C_{Fx} of 100 pF is used. With the snubber circuits, the bandwidth is restricted to approximately 10 MHz . To compromise between the peaking and the bandwidth, adjust the values of the snubber circuit.

Figure 69. Effect of Snubber Circuits on the Transimpedance Frequency Response (See Figure 68)

USING THE T NETWORK TO IMPLEMENT LARGE FEEDBACK RESISTOR VALUES

Large feedback resistors ($>1 \mathrm{M} \Omega$) can cause the two following issues in the transimpedance amplifier design:

- If the parasitic capacitance of the feedback resistor exceeds the optimal compensation value, it can significantly reduce the TIA signal bandwidth.
- If the required compensation capacitance is too low ($<1 \mathrm{pF}$), it is not practical to choose a feedback capacitor.

The T network (the $\mathrm{R}_{\mathrm{Fx}}, \mathrm{R} 2$, and R 1 resistors) maintains the transimpedance gain and signal bandwidth with a lower feedback resistor and a resistive gain network, as shown in Figure 70.

Figure 70. T Network
The relationship between the transimpedance $\mathrm{V}_{\text {out }} / \mathrm{I}_{\text {рното }}$ and the T network resistors ($\mathrm{R}_{\mathrm{Fx}}, \mathrm{R} 1$, and R 2) can be expressed as

$$
\begin{equation*}
\frac{V_{\text {OUT }}}{I_{\text {PНото }}}=-Z_{F} \times\left(1+\frac{R 2}{R 1}+\frac{R 2}{Z_{F}}\right) \tag{10}
\end{equation*}
$$

where:
Vout is the output voltage of the TIA.
$I_{\text {Рното }}$ is the input photodiode current.
$Z_{F}=R_{F x} /\left(\left(R_{F x} \times C_{F x}\right) s+1\right)$, where $R_{F x}$ and $C_{F x}$ are the feedback resistor and capacitor, respectively, of any of the chosen transimpedance gain paths.
$R 1$ and $R 2$ are the T network gain resistors.
If $Z_{F} \gg R 2$, the transimpedance equation is simplified to

$$
\frac{V_{\text {OUT }}}{I_{\text {РНото }}}=-\frac{R_{F x}}{\left(R_{F x} \times C_{F x}\right) s+1} \times\left(1+\frac{R 2}{R 1}\right)
$$

Therefore, as compared to the standard TIA design, the T network uses a feedback resistor value that is $1 /(1+\mathrm{R} 1 / \mathrm{R} 2)$ smaller to obtain the same transimpedance. This eliminates the concern of the high parasitic capacitance associated with the large feedback resistor. To maintain the same signal bandwidth (or same pole), increase C_{F} by a factor of $1+$ R2/R1 to eliminate concerns of an impractical small compensation capacitor.

As compared to a standard TIA design, the T network is noisier because the dominant voltage noise density is amplified by the gain factor $1+\mathrm{R} 2 / \mathrm{R} 1$.
Figure 71 shows the ADA4350 configured as a $1 \mathrm{M} \Omega$ transimpedance path and its T network equivalent. Figure 72 compares the performance of the $1 \mathrm{M} \Omega$ path and the equivalent T network with and without compensation capacitors.

Figure 71. 1 M Ω Transimpedance Path and its Equivalent T Network

Figure 72. Comparing the $1 M \Omega$ Transimpedance Path and
TNetwork Performance

OUTLINE DIMENSIONS

Figure 73. 28-Lead Thin Shrink Small Outline Package [TSSOP], (RU-28)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADA4350ARUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADA4350ARUZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
EVAL-ADA4350RUZ-P		Evaluation Board for 28-Lead TSSOP, Precision Version with Guard Rings	

[^4]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

[^0]: ${ }^{1}$ When referring to a single function of a multifunction pin, only the portion of the pin name that is relevant to the specification is listed. For full pin names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.

[^1]: ${ }^{1}$ When referring to a single function of a multifunction pin, only the portion of the pin name that is relevant to the specification is listed. For full pin names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.

[^2]: ${ }^{1}$ P1 and M1 within this table refer to the amplifiers shown in Figure 1.

[^3]: ${ }^{1}$ The optional internal 1 pF feedback capacitor provides a quick and convenient way to compensate the TIA when using a high value feedback resistor (>1 $\mathrm{M} \Omega$).

[^4]: ${ }^{1} Z=$ RoHS Compliant Part.

