Evaluation Board for the ADA4571-2 Integrated AMR Angle Sensor and Signal Conditioner

FEATURES

USB 2.0 interface

Jumper or computer controlled temperature compensation mode enable
Jumper or computer controlled power-down mode enable
Measurement test points and coaxial connectors

EVALUATION KIT CONTENTS

ADA4571-2 magnetic stimulus
Dipole magnet
Hand movable mounting
Read back electronics

ADDITIONAL EQUIPMENT NEEDED

6 V to 12 V bench supply (optional)
SDP-S controller board
USB cable (supplied with the SDP-S controller board)
LabVIEW 2013 software downloadable from ADA4571-2 product page

GENERAL DESCRIPTION

The EVAL-ADA4571-2 shows the ADA4571-2 in an end of shaft magnet configuration. The evaluation kit is composed of an ADA4571-2 motherboard, a magnetic stimulus on a hand turnable mount, a USB interface, and an SDP-S controller board. The required LabVIEW 2013 graphical user interface (GUI) software for Windows ${ }^{*}$ is available on the ADA4571-2 product page.
The EVAL-ADA4571-2 features an on-board 5 V regulator, a 6-channel simultaneous sampling analog-to-digital converter (ADC), and jumpers for enabling the temperature compensation and power-down modes within the ADA4571-2. The motherboard also features test points and unpopulated coaxial connectors for the six outputs of the device.

The SDP-S controller board controls the ADC on the motherboard reading back the ADA4571-2 outputs, to change the digital inputs to the ADA4571-2, interface with the GUI, and to supply power to the evaluation board through the USB connection.

ADA4571-2 END OF SHAFT EVALUATION SYSTEM

Figure 1.

TABLE OF CONTENTS

Features .. 1
Evaluation Kit Contents.. 1
Additional Equipment Needed .. 1
General Description ... 1
ADA4571-2 End of Shaft Evaluation System............................... 1
Revision History .. 2
Getting Started ... 3
Software Installation Procedures... 3
Evaluation Board Hardware .. 4
Jumper Configuration 4
Device Under Test (DUT) Outputs 4
Evaluation Board Software 5
Starting Up the Evaluation GUI 5
Overview of the Main GUI Window 5
Evaluation Board Schematic and Artwork 8
Ordering Information 9
Related Links 9

REVISION HISTORY

12/2016-Revision 0: Initial Version

GETTING STARTED

SOFTWARE INSTALLATION PROCEDURES

Before using the LabVIEW 2013 GUI, install the SDP-S controller board drivers and LabVIEW 2013 runtime engine.

LabVIEW 2013 Runtime Engine

To install the LabVIEW 2013 runtime engine, follow the instructions on the National Instruments website.

SDP Installation

To install the SDP drivers, first download the SDPDrivers.exe file from the SDP-S product page and complete the following steps:

1. Initialize installation by running SDPDrivers.exe.
2. When the SDP drivers setup wizard appears, click Next (see Figure 2).

Figure 2. SDP Driver Installation
3. When the Choose Install Location window appears (see Figure 3), click Install. Clicking Browse allows the user to select a different destination folder, followed by clicking Install.

Figure 3. Choose Install Location
4. Click Finish to complete the installation of the SDP drivers.
5. Connect the SDP-S controller board to the motherboard and plug the SDP-S controller board into the PC with the supplied USB cable. The computer now recognizes the SDP-S controller board and the LabVIEW GUI can be opened to continue.

Running the GUI

To run the GUI, first download the LabVIEW GUI software from the ADA4571-2 product page and complete the following steps:

1. Place the downloaded executable file and supporting files in a convenient location for use (see Figure 4); it is recommended to place these files on the root C drive of the PC. Do not separate the executable file from the other files that are downloaded or the executable does not run

Figure 4. Placing Downloaded Files onto the PC
2. Double-click the executable to launch the evaluation program.

EVALUATION BOARD HARDWARE

The EVAL-ADA4571-2 end of shaft evaluation system comprises of a PCB with the AD7266 ADC and an external mountable magnetic stimulus.
The ADA4571-2 evaluation system can be powered directly from the host PC USB, directly from an external bench supply, or through the on-board 5 V regulator, the ADP3336.

To power the motherboard through an on-board 5 V reference, apply 6 V to 12 V across P 3 to P 5 and configure the jumpers accordingly. If the bench supply features current-limiting, it is recommended to set the current limit to 100 mA as a precaution.

JUMPER CONFIGURATION

Refer to the ADA4571-2 motherboard schematic, see Figure 13, to understand the purpose of each jumper.
Configure the P10 motherboard default jumper as follows:

- Install a jumper on P10 between VBUS and BRD_SUPPLY to power the evaluation board through the USB connection at the PC.
- Alternatively, install a jumper on P10 between BRD_SUPPLY and _SUPPLY to power the evaluation board through the external bench supply

DEVICE UNDER TEST (DUT) OUTPUTS

The outputs of the ADA4571-2 can be monitored at the test points located on the Evaluation board.

All outputs from the ADA4571-2 are also sampled by the onboard ADC and are available in the GUI.

EVALUATION BOARD SOFTWARE

STARTING UP THE EVALUATION GUI
To power the evaluation board using the ADP3336 on-board 5 V supply install a jumper on P10 connecting SUPPLY and BRD_SUPPLY. Using an external power supply, plug the positive supply for the evaluation board into the red terminal, P3, and the negative terminal into P 5 on the motherboard. The evaluation board requires between 6 V to 12 V , which is then regulated to 5 V on the motherboard using the on-board ADP3336. This supply powers both the on-board ADC, AD7266, as well as the ADA4571-2.

To use the EVAL-ADA4571-2 evaluation board with full USB power, install a jumper on P10, connecting VBUS and BRD_SUPPLY. The 5 V USB power supplies the ADC reference pin on the AD7266 as well as the ADA4571-2.

OVERVIEW OF THE MAIN GUI WINDOW

Figure 5 shows the main GUI window after launching the GUI. When first launching the program, the SDP-S controller board must be recognized by the GUI before proceeding. Clicking the Connect SDP button reads the EEPROM identification of the motherboard to ensure the correct program is being used. If the SDP-S controller board is not connected or if the drivers are not installed correctly, an error message appears. Ensure the drivers are installed correctly and the PC recognizes the SDP-S controller board if this occurs.

After the SDP-S controller board is properly connected and the program recognizes the motherboard, the status bar reads SDP Board Ready and the yellow LED turns green.

Initially, all figures are blank. Click the Start Sampling button to begin sampling the device.

Figure 5. ADA4571-2 Evaluation Board Software Main Window

Vsin, Vcos, and VTEMP Raw Outputs

The Vsin, Vcos and VTEMP Raw Outputs graph shows all six outputs from the ADA4571-2 dual-channel magnetic angle sensor (see Figure 6).

Figure 6. Vsin, Vcos, and VTEMP Raw Outputs Graph
The blue and red waveforms indicate the $\mathrm{V}_{\text {SINx }}$ and $\mathrm{V}_{\text {cosx }}$ outputs, respectively, and the green waveform indicates the VTEMP output. As the magnet is rotated above the ADA4571-2 the $V_{\text {SINx }}$ and $V_{\text {cosx }}$ outputs change while staying 90° out-ofphase. The two channels report similar results that differ by the relative rotation of the sensor die and the voltage offset differences for the sine and cosine channels.
This plot shows the output waveforms sampled by the AD7266 ADC. The waveforms are plotted in 12-bit code. The AD7266 simultaneously samples $V_{\text {sinı }}$ and $V_{\text {cosi }}$ then switches inputs to sample $\mathrm{V}_{\text {sin2 } 2}$ and $\mathrm{V}_{\cos 2}$. An internal reference of 2.5 V is subtracted in the hardware as the readout of the ADC is in twos compliment. Therefore, the two signals center around 0 in the raw waveform plot. In a real application, it is important that these two channels are simultaneously sampled or extra errors introduced from the phase delay between the sampling of the individual channels. Every 50 samples of the $\mathrm{V}_{\text {SIN }}, \mathrm{V}_{\text {COS1 }}, \mathrm{V}_{\mathrm{SII} 2}$, and $\mathrm{V}_{\cos 2}$, the AD7266 samples VTEMP1 and VTEMP2.
When powering the board through the USB connector attached to the SDP-S controller board there is some variation in the supply voltage of the ADA4571-2. Due to the readout of the AD7266 in twos compliment form, with respect to the internal 2.5 V reference, the offset of these waveforms are higher than the inherent offset of the ADA4571-2. After offset correction of the sine and cosine signals, which is recommended for the end use of the sensor, the offsets due to the ADC reference as well as the sensor offset are removed.

Graphing Options

When running, the evaluation board constantly samples the $\mathrm{V}_{\mathrm{SIN} 1}, \mathrm{~V}_{\mathrm{COS} 1}, \mathrm{~V}_{\mathrm{SIN} 2}$, and $\mathrm{V}_{\operatorname{COS} 2}$ before sampling the VTEMP1 and VTEMP2 channel every 50 iterations.
The interval between sampling is chosen by inputting different values into the $\mathbf{m s}$ between samples field (see Figure 7). The default is 10 ms . This is a delay set after information is transferred from the AD7266.
The \# samples to graph field sets the number of samples to save and show in the graphs. The default is 200 samples.

Figure 7. Graphing Options Pane

Outputs and Calculated Values

Output and calculated values give the sensor information in number format (see Figure 8). Again, the $\mathrm{V}_{\text {SIN }}, \mathrm{V}_{\cos x}$, and VTEMP outputs are in 12-bit twos compliment form with respect to the 2.5 V internal reference of the AD7266 ADC.

Figure 8. Outputs and calculated values Pane for Channel 1 and Channel 2
A calculated angle value is also shown, given by the Arctan1 (Angle) and Arctan2 (Angle) function field, and a calculated radius, given by the square root of the sum of squares for each $\mathrm{V}_{\text {SINx }}$ and $\mathrm{V}_{\text {CoSx }}$ channel in the Radius1 (Code) and Radius2 (Code) field.

Electrical Angle

The electrical angle plot gives the calculated Arctan 1 (Angle) and Arctan2 (Angle) values in a visual format seen in Figure 9. As the magnetic field angle changes at the anisotropic magneto resistive (AMR) sensors, the electrical angle changes. Both channels give approximately the same information.

Figure 9. Electrical Angle

Vsin vs Vcos

The Vsin vs Vcos graph is another way to visualize the electrical angle from the ADA4571-2. However, there is more information given in Figure 10, showing the radius of the output values which can give further diagnostic information to system. As long as the sensor is fully saturated, or the applied magnetic field strength exceeds $25 \mathrm{kA} / \mathrm{m}$, the radius value remains unchanged at a constant temperature. As the AMR effect is smaller at high temperatures the radius value changes with respect to temperature. See the ADA4571-2 data sheet for the temperature coefficient values for the output amplitude for the $\mathrm{V}_{\text {sinx }}$ and $\mathrm{V}_{\operatorname{cosx}}$ channels.

Figure 10. Vsin vs Vcos Graph

Digital Inputs

Four digital inputs on the ADA4571-2 can be toggled using the Digital Inputs buttons.
The power-down button for each channel puts the devices into a low power state by disabling the internal circuitry for that channel and placing the outputs into a high impedance mode. See the ADA4571-2 data sheet for the power-down current per channel in the device. The power-down function of each channel can be toggled separately.
The Gain Control 1 Disabled and Gain Control 2 Disabled buttons put the device into the gain control mode (see Figure 11). This mode alters bridge supply voltage based on the internal temperature value of the device.

Through this mode, the output amplitude temperature coefficient of the ADA4571-2 reduces. See the ADA4571-2 data sheet for output amplitude vs. temperature with the gain control enabled and disabled.

Figure 11. Digital Inputs Pane

Offset Calibration

An offset calibration is required to maximize the accuracy of the ADA4571-2. The $\mathrm{V}_{\text {SIN } 1}, \mathrm{~V}_{\text {Cosi }}, \mathrm{V}_{\text {SIN } 2}$, and $\mathrm{V}_{\operatorname{Cos} 2}$ channels have inherent voltage offsets due to resistor mismatch within the AMR sensor bridges. See the ADA4571-2 data sheet offset voltage ranges for the outputs.

There are a few methods that can null the offsets for the outputs. To run an offset calibration on Channel 1, click Run Cal CH1 (see Figure 12). Once clicked, rotate the magnetic stimulus slowly through an entire mechanical rotation. This ensures the maximum and minimum output voltages are found for each channel.

Offset Calibration

Figure 12. Offset Calibration Pane

EVALUATION BOARD SCHEMATIC AND ARTWORK

Resource	Description
ADA4571-2	Integrated AMR Angle Sensor and Signal Conditioner
ADP3336	High Accuracy Ultralow Io, 500 mA anyCAP ${ }^{\star}$ Adjustable Low Dropout Regulator
AD7266	Differential/Single-Ended Input, Dual 2 MSPS, 12-Bit, 3-Channel SAR ADC

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

 submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Magnetic Sensor Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
$\underline{\text { AS5045 DB V2 AS5134 AB MMC5633NJL-B ROTATEKNOBANGLE2GOTOBO1 MIKROE-1647 MIKROE-1646 EVAL-CN0332- }}$
PMDZ AS5510-SO_EK_AB AS5510-WL_EK_DB ADA4571R-EBZ AS5170A-SO_EK_AB 4366 AS5013-QF_EK_AB AS5040 AB AS5040 DB V2 AS5040-SS_EK_PB AS5045 AB AS5047D-TS_EK_AB AS5048A-EK-AB-STM1.1 AS5048A-TS_EK_AB AS5048TS_EK_DB AS5050A-QF_EK_AB AS5132 AB AS5132 DB AS5132-PB AS5140 DB AS5145B-EK-AB-STM1.0 AS5147P-TS_EK_AB AS5162-EK-AB AS5172B-TS_EK_AB AS5247-MF_EK_SB AS5247U-TQ_EK_AB AS5247U-TQ_EK_SB AS5262-MF_EK_AB AS5311TS_EK_AB AS5510-SOIC8-AB AS5600-SO_EK_AB AS5600-SO_EK_ST AS5601-SO_EK_AB AS5601-SO_EK_ST AS5601-SO_RD_ST AS5X47U-TS_EK_AB SD4Y-EK-XX USB I\&P BOX EVAL-CN0323-SDPZ EVAL-CN0368-SDPZ DFR0033 OUTOFSHAFTFOR3D2GOTOBO1 S2GO3DSENSETLV493DTOBO1 S2GOCURSENSETLI4970TOBO1

