Data Sheet

FEATURES

180 ps propagation delay

25 ps overdrive and slew rate dispersion
8 GHz equivalent input rise time bandwidth
100 ps minimum pulse width
37 ps typical output rise/fall
10 ps deterministic jitter (DJ)
200 fs random jitter (RJ)
-2 V to +3 V input range with $+5 \mathrm{~V} /-5 \mathrm{~V}$ supplies
On-chip terminations at both input pins
Resistor-programmable hysteresis
Differential latch control
Power supply rejection > 70 dB

APPLICATIONS

Automatic test equipment (ATE)
High speed instrumentation
Pulse spectroscopy
Medical imaging and diagnostics
High speed line receivers

Threshold detection

Peak and zero-crossing detectors
High speed trigger circuitry
Clock and data signal restoration

GENERAL DESCRIPTION

The ADCMP580/ADCMP581/ADCMP582 are ultrafast voltage comparators fabricated on the Analog Devices, Inc. proprietary XFCB3 Silicon Germanium (SiGe) bipolar process. The ADCMP580 features CML output drivers, the ADCMP581 features reduced swing ECL (negative ECL) output drivers, and the ADCMP582 features reduced swing PECL (positive ECL) output drivers.

All three comparators offer 180 ps propagation delay and 100 ps minimum pulse width for 10 Gbps operation with 200 fs random jitter (RJ). Overdrive and slew rate dispersion are typically less than 15 ps .
The $\pm 5 \mathrm{~V}$ power supplies enable a wide -2 V to +3 V input range with logic levels referenced to the CML/NECL/PECL outputs. The inputs have 50Ω on-chip termination resistors with the optional capability to be left open (on an individual pin basis) for applications requiring high impedance input.

Figure 1.

The CML output stage is designed to directly drive 400 mV into 50Ω transmission lines terminated to ground. The NECL output stages are designed to directly drive 400 mV into 50Ω terminated to -2 V . The PECL output stages are designed to directly drive 400 mV into 50Ω terminated to $\mathrm{V}_{\text {cco }}-2 \mathrm{~V}$. High speed latch and programmable hysteresis are also provided. The differential latch input controls are also 50Ω terminated to an independent $\mathrm{V}_{\text {тт }}$ pin to interface to either CML or ECL or to PECL logic.
The ADCMP580/ADCMP581/ADCMP582 are available in a 16-lead LFCSP.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Timing Information 5
Absolute Maximum Ratings 6
Thermal Considerations6
ESD Caution 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 9
Typical Application Circuits 11
REVISION HISTORY
4/16-Rev. A to Rev. B
Deleted Figure 4; Renumbered Sequentially 7
Changes to Figure 3 and Table 4 7
Changes to Figure 4 8
Added Table 5; Renumbered Sequentially 8
Updated Outline Dimensions 14
Changes to Ordering Guide 14
8/07—Rev. 0 to Rev. A
Changes to Figure 1 1
Changes to Table 4 7
Changes to Figure 9 8
Changes to Figure 21, Figure 22, and Figure 23 10
Changes to Using/Disabling the Latch Feature 11
Changes to Comparator Hysteresis Section and Figure 29. 13
Changes to Ordering Guide 14
Applications Information 12
Power/Ground Layout and Bypassing 12
ADCMP580/ADCMP581/ADCMP582 Family of OutputStages.12
Using/Disabling the Latch Feature 12
Optimizing High Speed Performance 13
Comparator Propagation Delay Dispersion 13
Comparator Hysteresis 14
Minimum Input Slew Rate Requirement 14
Outline Dimensions 15
Ordering Guide 15

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CCI}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
DC INPUT CHARACTERISTICS Input Voltage Range Input Differential Range Input Offset Voltage Offset Voltage Temperature Coefficient Input Bias Current Input Bias Current Temperature Coefficient Input Offset Current Input Resistance Input Resistance, Differential Mode Input Resistance, Common Mode Active Gain Common-Mode Rejection Ratio Hysteresis	V_{p}, V_{N} Vos $\Delta \mathrm{V}_{\mathrm{os}} / \mathrm{d}_{\mathrm{T}}$ $\mathrm{I}_{\mathrm{p},} \mathrm{I}_{\mathrm{N}}$ $\Delta I_{B} / \mathrm{d}_{\mathrm{T}}$ A_{v} CMRR	Open termination Open termination Open termination $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=-2.0 \mathrm{~V} \text { to }+3.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{HYS}}=\infty \end{aligned}$	$\begin{aligned} & -2.0 \\ & -2.0 \\ & -10.0 \end{aligned}$	± 4 10 15 50 $+2$ 47 to 53 50 500 48 60 1	$\begin{aligned} & +3.0 \\ & +2.0 \\ & +10.0 \\ & 30.0 \\ & \pm 5.0 \end{aligned}$	V V mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mathrm{nA} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ Ω $\mathrm{k} \Omega$ $\mathrm{k} \Omega$ dB dB mV
LATCH ENABLE CHARACTERISTICS Latch Enable Input Impedance Latch-to-Output Delay Latch Minimum Pulse Width ADCMP580 (CML) Latch Enable Input Range Latch Enable Input Differential Latch Setup Time Latch Hold Time ADCMP581 (NECL) Latch Enable Input Range Latch Enable Input Differential Latch Setup Time Latch Hold Time ADCMP582 (PECL) Latch Enable Input Range Latch Enable Input Differential Latch Setup Time Latch Hold Time	Z_{IN} tploh, tplol tpl ts t_{H} ts t_{H} t_{5} t_{H}	Each pin, V_{TT} at ac ground $\begin{aligned} & V_{O D}=200 \mathrm{mV} \\ & V_{O D}=200 \mathrm{mV} \end{aligned}$ $\begin{aligned} & V_{O D}=200 \mathrm{mV} \\ & V_{O D}=200 \mathrm{mV} \end{aligned}$ $\begin{aligned} & V_{\mathrm{OD}}=200 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{OD}}=200 \mathrm{mV} \end{aligned}$ $\begin{aligned} & V_{O D}=200 \mathrm{mV} \\ & V_{O D}=200 \mathrm{mV} \end{aligned}$	$\begin{aligned} & -0.8 \\ & 0.2 \\ & \\ & \\ & -1.8 \\ & 0.2 \\ & \\ & \\ & V_{\text {cco }}-1.8 \\ & 0.2 \end{aligned}$	47 to 53 175 100 0.4 95 -90 0.4 70 -65 0.4 30 -25	0 0.5 $+0.8$ 0.5 $\begin{aligned} & V_{\text {cco }}-0.8 \\ & 0.5 \end{aligned}$	Ω ps ps V V p ps ps V V ps ps V V p
DC OUTPUT CHARACTERISTICS ADCMP580 (CML) Output Impedance Output Voltage High Level Output Voltage Low Level Output Voltage Differential ADCMP581 (NECL) Output Voltage High Level Output Voltage High Level Output Voltage High Level Output Voltage Low Level Output Voltage Low Level Output Voltage Low Level Output Voltage Differential	Zout V_{OH} VoL V_{OH} V_{OH} $\mathrm{V}_{\text {OH }}$ Vol VoL VoL	$\begin{aligned} & 50 \Omega \text { to } \mathrm{GND} \\ & 50 \Omega \text { to } \mathrm{GND} \\ & 50 \Omega \text { to GND } \\ & \\ & 50 \Omega \text { to }-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ & 50 \Omega \text { to }-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 50 \Omega \text { to }-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & 50 \Omega \text { to }-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ & 50 \Omega \text { to }-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 50 \Omega \text { to }-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & 50 \Omega \text { to }-2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.10 \\ & -0.50 \\ & 340 \\ & \\ & -0.99 \\ & -1.06 \\ & -1.11 \\ & -1.43 \\ & -1.50 \\ & -1.55 \\ & 340 \end{aligned}$	$\begin{aligned} & 50 \\ & 0 \\ & -0.40 \\ & 395 \\ & \\ & -0.87 \\ & -0.94 \\ & -0.99 \\ & -1.26 \\ & -1.33 \\ & -1.38 \\ & 395 \end{aligned}$	$\begin{aligned} & +0.03 \\ & -0.35 \\ & 450 \\ & \\ & -0.75 \\ & -0.82 \\ & -0.87 \\ & -1.13 \\ & -1.20 \\ & -1.25 \\ & 450 \end{aligned}$	$\begin{aligned} & \Omega \\ & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \hline \end{aligned}$

ADCMP580/ADCMP581/ADCMP582

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
ADCMP582 (PECL)		V cco $=3.3 \mathrm{~V}$				
Output Voltage High Level	Vor	50Ω to $\mathrm{V}_{\text {cco }}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	V cco - 0.99	V ${ }_{\text {cco }}-0.87$	V cco -0.75	V
Output Voltage High Level	$\mathrm{V}_{\text {OH }}$	50Ω to $\mathrm{V}_{\text {cco }}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	V $\mathrm{cco}^{\text {- }} 1.06$	$V_{\text {cco }}-0.94$	$V_{\text {cco }}-0.82$	V
Output Voltage High Level	$\mathrm{V}_{\text {OH }}$	50Ω to $\mathrm{V}_{\text {cco }}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	V $\mathrm{cco}^{\text {- }} 1.11$	$V_{\text {cco }}-0.99$	$V_{\text {cco }}-0.87$	V
Output Voltage Low Level	Vol	50Ω to $\mathrm{V}_{\text {cco }}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	V $\mathrm{cco}^{\text {- }} 1.43$	$V_{\text {cco }}-1.26$	V $\mathrm{Cco}^{\text {- }} 1.13$	V
Output Voltage Low Level	VoL	50Ω to $\mathrm{V}_{\text {cco }}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	V $\mathrm{cco}^{\text {- }} 1.50$	$V_{\text {cco }}-1.33$	V $\mathrm{cco}^{\text {- }} 1.20$	V
Output Voltage Low Level	VoL	50Ω to V cco $-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	Vcco-1.55	Vcco-1.35	Vcco-1.25	V
Output Voltage Differential		50Ω to V $\mathrm{cco}-2.0 \mathrm{~V}$	340	395	450	mV
AC PERFORMANCE						
Propagation Delay	$\mathrm{t}_{\text {PD }}$	$V_{O D}=500 \mathrm{mV}$		180		ps
Propagation Delay Temperature Coefficient	$\Delta t_{\text {pD }} / \mathrm{d}_{\mathrm{T}}$			0.25		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$
Propagation Delay Skew—Rising Transition to Falling Transition		$V_{\text {OD }}=500 \mathrm{mV}, 5 \mathrm{~V} / \mathrm{ns}$		10		ps
Overdrive Dispersion		$50 \mathrm{mV}<\mathrm{V}_{\text {OD }}<1.0 \mathrm{~V}$		10		ps
		10 mV < $\mathrm{V}_{\text {OD }}<200 \mathrm{mV}$		15		ps
Slew Rate Dispersion		$2 \mathrm{~V} / \mathrm{ns}$ to $10 \mathrm{~V} / \mathrm{ns}$		15		ps
Pulse Width Dispersion		100 ps to 5 ns		15		ps
Duty Cycle Dispersion 5\% to 95\%		$1.0 \mathrm{~V} / \mathrm{ns}, 15 \mathrm{MHz}, \mathrm{V}_{\text {cm }}=0.0 \mathrm{~V}$		10		ps
Common-Mode Dispersion		$\mathrm{V}_{\text {OD }}=0.2 \mathrm{~V},-2 \mathrm{~V}<\mathrm{V}_{\text {CM }}<3 \mathrm{~V}$		5		ps/V
Equivalent Input Bandwidth ${ }^{1}$	BWEQ	0.0 V to 400 mV input, $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=25 \mathrm{ps}, 20 / 80$		8		GHz
Toggle Rate		$>50 \%$ output swing		12.5		Gbps
Deterministic Jitter	DJ	$\mathrm{V}_{\mathrm{OD}}=500 \mathrm{mV}, 5 \mathrm{~V} / \mathrm{ns}$, PRBS ${ }^{31}-1$ NRZ, 5 Gbps		15		ps
Deterministic Jitter	DJ	$V_{\text {OD }}=200 \mathrm{mV}, 5 \mathrm{~V} / \mathrm{ns}$, PRBS ${ }^{31}$ - 1 NRZ, 10 Gbps		25		ps
RMS Random Jitter	RJ	$\mathrm{V}_{\text {OD }}=200 \mathrm{mV}, 5 \mathrm{~V} / \mathrm{ns}, 1.25 \mathrm{GHz}$		0.2		ps
Minimum Pulse Width	PWMin	$\Delta \mathrm{tpD}<5 \mathrm{ps}$		100		ps
Minimum Pulse Width	PWMIN	$\Delta \mathrm{tpD}<10 \mathrm{ps}$		80		ps
Rise/Fall Time	$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}$	20/80		37		ps
POWER SUPPLY						
Positive Supply Voltage	$\mathrm{V}_{\text {cl }}$		+4.5	+5.0	+5.5	V
Negative Supply Voltage	$V_{\text {EE }}$		-5.5	-5.0	-4.5	V
ADCMP580 (CML)						
Positive Supply Current	Ivcci	$\mathrm{V}_{\text {cli }}=5.0 \mathrm{~V}, 50 \Omega$ to GND		6	8	mA
Negative Supply Current	Ivee	$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, 50 \Omega$ to GND	-50	-40	-34	mA
Power Dissipation	PD	50Ω to GND		230	260	mW
ADCMP581 (NECL)						
Positive Supply Current	Ivcci	$\mathrm{V}_{\text {ccl }}=5.0 \mathrm{~V}, 50 \Omega$ to -2 V		6	8	mA
Negative Supply Current	Ivee	$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, 50 \Omega$ to -2 V	-35	-25	-19	mA
Power Dissipation	PD	50Ω to - 2 V		155	200	mW
ADCMP582 (PECL)						
Logic Supply Voltage	V cco		+2.5	+3.3	+5.0	V
Input Supply Current	Iveci	$\mathrm{V}_{\text {ccl }}=5.0 \mathrm{~V}, 50 \Omega$ to $\mathrm{V}_{\text {cco }}-2 \mathrm{~V}$		6	8	mA
Output Supply Current	Ivcco	$\mathrm{V}_{\text {cco }}=5.0 \mathrm{~V}, 50 \Omega$ to $\mathrm{V}_{\text {cco }}-2 \mathrm{~V}$		44	55	mA
Negative Supply Current	Ivee	$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, 50 \Omega$ to $\mathrm{V}_{\text {cco }}-2 \mathrm{~V}$	-35	-25	-19	mA
Power Dissipation	PD	50Ω to Vcco - 2 V		310	350	mW
Power Supply Rejection (Vcı)	PSRucci	$\mathrm{V}_{\mathrm{ccI}}=5.0 \mathrm{~V}+5 \%$		-75		dB
Power Supply Rejection ($\mathrm{VEE}_{\text {E }}$)	PSRivee	$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}+5 \%$		-60		dB
Power Supply Rejection (Vcco)	PSRycco	$\mathrm{V}_{\text {cco }}=3.3 \mathrm{~V}+5 \%$ (ADCMP582)		-75		dB

[^0]
TIMING INFORMATION

Figure 2 shows the ADCMP580/ADCMP581/ADCMP582 compare and latch timing relationships. Table 2 provides the definitions of the terms shown in Figure 2.

Figure 2. Comparator Timing Diagram

Table 2. Timing Descriptions
$\left.\begin{array}{l|l|l}\hline \text { Symbol } & \text { Symbol Description } & \text { Timing Description } \\ \hline t_{\text {PDH }} & \text { Input-to-Output High Delay } & \begin{array}{l}\text { Propagation delay measured from the time the input signal crosses the reference } \\ \text { (} \pm \text { the input offset voltage) to the } 50 \% \text { point of an output low-to-high transition. } \\ \text { Propagation delay measured from the time the input signal crosses the reference } \\ \text { (} \pm \text { the input offset voltage) to the } 50 \% \text { point of an output high-to-low transition. }\end{array} \\ t_{\text {tPLL }} & \text { Input-to-Output Low Delay } & \text { Latch Enable-to-Output High Delay } \\ \mathrm{t}_{\mathrm{PLOL}} & \text { Latch Enable-to-Output Low Delay } \\ \text { transition to the } 50 \% \text { point of an output low-to-high transition. } \\ \text { Propagation delay measured from the } 50 \% \text { point of the latch enable signal low-to-high } \\ \text { transition to the } 50 \% \text { point of an output high-to-low transition. } \\ \text { Minimum time after the negative transition of the latch enable signal that the input } \\ \text { signal must remain unchanged to be acquired and held at the outputs. }\end{array}\right\}$

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
SUPPLY VOLTAGES Positive Supply Voltage (VCl to GND) Negative Supply Voltage (VEE to GND) Logic Supply Voltage (Vcco to GND)	$\begin{aligned} & -0.5 \mathrm{~V} \text { to }+6.0 \mathrm{~V} \\ & -6.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\ & -0.5 \mathrm{~V} \text { to }+6.0 \mathrm{~V} \end{aligned}$
INPUT VOLTAGES Input Voltage Differential Input Voltage Input Voltage, Latch Enable	$\begin{aligned} & -3.0 \mathrm{~V} \text { to }+4.0 \mathrm{~V} \\ & -2 \mathrm{~V} \text { to }+2 \mathrm{~V} \\ & -2.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{aligned}$
HYSTERESIS CONTROL PIN Applied Voltage (HYS to V_{EE}) Maximum Input/Output Current	$\begin{aligned} & -5.5 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\ & 1 \mathrm{~mA} \end{aligned}$
OUTPUT CURRENT ADCMP580 (CML) ADCMP581 (NECL) ADCMP582 (PECL)	$-25 \mathrm{~mA}$ $-40 \mathrm{~mA}$ $-40 \mathrm{~mA}$
TEMPERATURE Operating Temperature Range, Ambient Operating Temperature, Junction Storage Temperature Range	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & 125^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL CONSIDERATIONS

The ADCMP580/ADCMP581/ADCMP582 16-lead LFCSP option has a junction-to-ambient thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of $70^{\circ} \mathrm{C} / \mathrm{W}$ in still air.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADCMP580/ADCMP581/ADCMP582

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Abstract

NOTES 1. THE METALLIC BACK SURFACE OF THE PACKAGE IS NOT ELECTRICALLY

CONNECTED TO ANY PART OF THE CIRCUIT. IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED THERMAL ANDIOR MECHANICAL STABILITY IS DESIRED.

Figure 3. ADCMP580/ADCMP581 Pin Configuration
Table 4. ADCMP580/ADCMP581 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\text {TP }}$	Termination Resistor Return Pin for V_{p} Input.
2	V_{P}	Noninverting Analog Input.
3	V_{N}	Inverting Analog Input.
4	$V_{\text {TN }}$	Termination Resistor Return Pin for V_{N} Input.
5,16	VCCI	Positive Supply Voltage.
6	$\overline{\mathrm{LE}}$	Latch Enable Input Pin, Inverting Side. In compare mode ($\overline{\mathrm{LE}}=$ low), the output tracks changes at the input of the comparator. In latch mode ($\overline{\mathrm{LE}}=$ high), the output reflects the input state just prior to the comparator being placed into latch mode. $\overline{\mathrm{LE}}$ must be driven in complement with LE .
7	LE	Latch Enable Input Pin, Noninverting Side. In compare mode (LE = high), the output tracks changes at the input of the comparator. In latch mode $(\mathrm{LE}=\mathrm{low})$, the output reflects the input state just prior to the comparator being placed into latch mode. LE must be driven in complement with $\overline{\mathrm{LE}}$.
8	$V_{T T}$	Termination Return Pin for the LE/LE Input Pins. For the ADCMP580 (CML output stage), this pin must be connected to ground. For the ADCMP581 (ECL output stage), connect this pin to the -2 V termination potential.
9,12	GND	Digital Ground Pin/Positive Logic Power Supply Terminal. This pin must be connected to the GND pin.
10	$\overline{\mathrm{Q}}$	Inverting Output. $\overline{\mathrm{Q}}$ is logic low if the analog voltage at the noninverting input, V_{p}, is greater than the analog voltage at the inverting input, V_{N}, provided that the comparator is in compare mode. See the LE/ $\overline{\mathrm{EE}}$ descriptions (Pin 6 to Pin 7) for more information.
11	Q	Noninverting Output. Q is logic high if the analog voltage at the noninverting input, V_{P}, is greater than the analog voltage at the inverting input, V_{N}, provided that the comparator is in compare mode. See the LE/ $\overline{\mathrm{LE}}$ descriptions (Pin 6 to Pin 7) for more information.
13	$V_{\text {EE }}$	Negative Power Supply.
14	HYS	Hysteresis Control. Leave this pin disconnected for zero hysteresis. Connect this pin to the $\mathrm{V}_{\text {EE }}$ supply with a suitably sized resistor to add the desired amount of hysteresis. Refer to Figure 8 for proper sizing of the HYS hysteresis control resistor.
15	GND	Analog Ground.
	EPAD	Exposed Pad. The metallic back surface of the package is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired.

ADCMP580/ADCMP581/ADCMP582

NOTES

1. THE METALLIC BACK SURFACE OF THE PACKAGE IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT. IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED THERMAL ANDIOR MECHANICAL STABILITY IS DESIRED.

Figure 4. ADCMP582 Pin Configuration

Table 5. ADCMP582 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\text {TP }}$	Termination Resistor Return Pin for V_{p} Input.
2	$V_{\text {P }}$	Noninverting Analog Input.
3	V_{N}	Inverting Analog Input.
4	$V_{\text {TN }}$	Termination Resistor Return Pin for V_{N} Input.
5,16	$\mathrm{V}_{\text {cal }}$	Positive Supply Voltage.
6	$\overline{\mathrm{LE}}$	Latch Enable Input Pin, Inverting Side. In compare mode ($\overline{\mathrm{LE}}=$ low), the output tracks changes at the input of the comparator. In latch mode ($\overline{\mathrm{LE}}=$ high), the output reflects the input state just prior to the comparator being placed into latch mode. $\overline{L E}$ must be driven in complement with LE.
7	LE	Latch Enable Input Pin, Noninverting Side. In compare mode (LE = high), the output tracks changes at the input of the comparator. In latch mode (LE = low), the output reflects the input state just prior to the comparator being placed into latch mode. LE must be driven in complement with $\overline{\mathrm{LE}}$.
8	V_{T}	Termination Return Pin for the LE/LE Input Pins. For the ADCMP582 (PECL output stage), connect this pin to the Vcco-2 V termination potential.
9, 12	Vcco	Digital Ground Pin/Positive Logic Power Supply Terminal. This pin must be connected to the positive logic power Vcco supply.
10	$\overline{\mathrm{Q}}$	Inverting Output. $\overline{\mathrm{Q}}$ is logic low if the analog voltage at the noninverting input, V_{P}, is greater than the analog voltage at the inverting input, V_{N}, provided that the comparator is in compare mode. See the $\mathrm{LE} / \overline{\mathrm{LE}}$ descriptions (Pin 6 to Pin 7) for more information.
11	Q	Noninverting Output. Q is logic high if the analog voltage at the noninverting input, V_{P}, is greater than the analog voltage at the inverting input, V_{N}, provided that the comparator is in compare mode. See the LE/LE descriptions (Pin 6 to Pin 7) for more information.
13	$\mathrm{V}_{\text {EE }}$	Negative Power Supply.
14	HYS	Hysteresis Control. Leave this pin disconnected for zero hysteresis. Connect this pin to the $\mathrm{V}_{\text {EE }}$ supply with a suitably sized resistor to add the desired amount of hysteresis. Refer to Figure 8 for proper sizing of the HYS hysteresis control resistor.
15	GND	Analog Ground.
	EPAD	Exposed Pad. The metallic back surface of the package is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CCI}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 5. Bias Current vs. Common-Mode Voltage

Figure 6. ADCMP581 Output Voltage vs. Temperature

Figure 7. Hysteresis vs. -IHYST

Figure 8. Hysteresis vs. RHys Control Resistor

Figure 9. ADCMP582 Output Voltage vs. Temperature

Figure 10. A Typical Vos vs. Common-Mode Voltage

Figure 11. ADCMP580 Propagation Delay Error vs. Common-Mode Voltage

Figure 12. ADCMP580 Eye Diagram at 7.5 Gbps

Figure 13. Dispersion vs. Overdrive

Figure 14. ADCMP581 t_{R} / t_{F} vs. Temperature

Figure 15. ADCMP582 Eye Diagram at 2.5 Gbps

TYPICAL APPLICATION CIRCUITS

Figure 16. Zero-Crossing Detector with CML Outputs on the ADCMP580

Figure 17.LVDS to a 50Ω Back-Terminated (RS) ECL Receiver on the ADCMP581

Figure 18. Adding Hysteresis Using the HYS Control on the ADCMP580

Figure 19. Comparator with -2 to +3 V Input Range on the ADCMP580

Figure 20. Disabling the Latch Feature on the ADCMP580

Figure 21. Disabling the Latch Feature on the ADCMP581

Figure 22. Disabling the Latch Feature on the ADCMP582

APPLICATIONS INFORMATION
 POWER/GROUND LAYOUT AND BYPASSING

The ADCMP580/ADCMP581/ADCMP582 family of comparators is designed for very high speed applications. Consequently, high speed design techniques must be used to achieve the specified performance. It is critically important to use low impedance supply planes, particularly for the negative supply $\left(\mathrm{V}_{\mathrm{EE}}\right)$, the output supply plane ($\mathrm{V}_{\mathrm{CCO}}$), and the ground plane (GND). Individual supply planes are recommended as part of a multilayer board. Providing the lowest inductance return path for the switching currents ensures the best possible performance in the target application.
It is also important to adequately bypass the input and output supplies. A $1 \mu \mathrm{~F}$ electrolytic bypass capacitor must be placed within several inches of each power supply pin to ground. In addition, multiple high quality $0.1 \mu \mathrm{~F}$ bypass capacitors must be placed as close as possible to each of the $V_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CCI}}$, and $\mathrm{V}_{\mathrm{CCO}}$ supply pins and must be connected to the GND plane with redundant vias. High frequency bypass capacitors must be carefully selected for minimum inductance and ESR. Parasitic layout inductance must be strictly avoided to maximize the effectiveness of the bypass at high frequencies.

ADCMP580/ADCMP581/ADCMP582 FAMILY OF OUTPUT STAGES

Specified propagation delay dispersion performance is achieved by using proper transmission line terminations. The outputs of the ADCMP580 family comparators are designed to directly drive 400 mV into 50Ω cable or microstrip/stripline transmission lines terminated with 50Ω referenced to the proper return. The CML output stage for the ADCMP580 is shown in the simplified schematic diagram in Figure 23. Each output is backterminated with 50Ω for best transmission line matching. The outputs of the ADCMP581/ADCMP582 are illustrated in Figure 24; they must be terminated to -2 V for ECL outputs of ADCMP581 and $\mathrm{V}_{\text {CCO }}-2 \mathrm{~V}$ for PECL outputs of ADCMP582. As an alternative, Thevenin equivalent termination networks can also be used. If these high speed signals must be routed more than a centimeter, either microstrip or stripline techniques are required to ensure proper transition times and to prevent excessive output ringing and pulse width-dependent propagation delay dispersion.

Figure 23. Simplified Schematic Diagram of the ADCMP580 CML Output Stage

Figure 24. Simplified Schematic Diagram of the ADCMP581/ADCMP582 ECL/PECL Output Stage

USING/DISABLING THE LATCH FEATURE

The latch inputs (LE/LE) are active low for latch mode and are internally terminated with 50Ω resistors to the $V_{\text {TT }}$ pin. When using the ADCMP580, $\mathrm{V}_{\text {TT }}$ must be connected to ground. When using the ADCMP581, $\mathrm{V}_{\text {TT }}$ must be connected to -2 V . When using the ADCMP582, $\mathrm{V}_{\text {TT }}$ must be connected externally to $\mathrm{V}_{\text {CCo }}$ - 2 V , preferably with its own low inductance plane.

When using the ADCMP580, the latch function can be disabled by connecting the $\overline{\mathrm{LE}}$ pin to $\mathrm{V}_{\text {EE }}$ with an external pull-down resistor and by leaving the LE pin to ground. To prevent excessive power dissipation, the resistor must be $1 \mathrm{k} \Omega$ for the ADCMP580. When using the ADCMP581 comparators, the latch can be disabled by connecting the $\overline{\mathrm{LE}}$ pin to V_{EE} with an external 750Ω resistor and leaving the LE pin connected to -2 V . The idea is to create an approximate 0.5 V offset using the internal resistor as half of the voltage divider. Connect the $\mathrm{V}_{\text {тT }}$ pin as recommended.

OPTIMIZING HIGH SPEED PERFORMANCE

As with any high speed comparator, proper design and layout techniques are essential to obtaining the specified performance. Stray capacitance, inductance, inductive power, and ground impedances or other layout issues can severely limit performance and can cause oscillation. Discontinuities along input and output transmission lines can also severely limit the specified pulse width dispersion performance.
For applications in a 50Ω environment, input and output matching have a significant impact on data-dependent (or deterministic) jitter (DJ) and pulse width dispersion performance. The ADCMP580/ADCMP581/ADCMP582 family of comparators provides internal 50Ω termination resistors for both V_{P} and V_{N} inputs. The return side for each termination is pinned out separately with the V_{TP} and V_{TN} pins, respectively. If a 50Ω termination is desired at one or both of the $\mathrm{V}_{\mathrm{P}} / \mathrm{V}_{\mathrm{N}}$ inputs, the V_{TP} and $\mathrm{V}_{\text {TN }}$ pins can be connected (or disconnected) to (from) the desired termination potential as appropriate. The termination potential must be carefully bypassed using ceramic capacitors as discussed previously to prevent undesired aberrations on the input signal due to parasitic inductance in the termination return path. If a 50Ω termination is not desired, either one or both of the $\mathrm{V}_{\mathrm{TP}} / \mathrm{V}_{\mathrm{TN}}$ termination pins can be left disconnected. In this case, the open pins must be left floating with no external pull downs or bypassing capacitors.
For applications that require high speed operation but do not have on-chip 50Ω termination resistors, some reflections must be expected, because the comparator inputs can no longer provide matched impedance to the input trace leading up to the device. It then becomes important to back-match the drive source impedance to the input transmission path leading to the input to minimize multiple reflections. For applications in which the comparator is less than 1 cm from the driving signal source, the source impedance must be minimized. High source impedance in combination with parasitic input capacitance of the comparator could cause undesirable degradation in bandwidth at the input, thus degrading the overall response. It is therefore recommended that the drive source impedance be no more than 50Ω for best high speed performance.

COMPARATOR PROPAGATION DELAY DISPERSION

The ADCMP580/ADCMP581/ADCMP582 family of comparators has been specifically designed to reduce propagation delay dispersion over a wide input overdrive range of 5 mV to 500 mV . Propagation delay dispersion is a change in propagation delays that results from a change in the degree of overdrive or slew rate (how far or how fast the input signal exceeds the switching threshold). The overall result is a higher degree of timing accuracy.

Propagation delay dispersion is a specification that becomes important in critical timing applications, such as data communications, automatic test and measurement, instrumentation, and event-driven applications, such as pulse spectroscopy, nuclear instrumentation, and medical imaging. Dispersion is defined as the variation in the overall propagation delay as the input overdrive conditions are changed (see Figure 25 and Figure 26). For the ADCMP580/ADCMP581/ADCMP582 family of comparators, dispersion is typically $<25 \mathrm{ps}$, because the overdrive varies from 5 mV to 500 mV , and the input slew rate varies from $1 \mathrm{~V} / \mathrm{ns}$ to $10 \mathrm{~V} / \mathrm{ns}$. This specification applies for both positive and negative signals because the ADCMP580/ADCMP581/ADCMP582 family of comparators has almost equal delays for positive- and negative-going inputs.

Figure 25. Propagation Delay—Overdrive Dispersion

Figure 26. Propagation Delay—Slew Rate Dispersion

COMPARATOR HYSTERESIS

Adding hysteresis to a comparator is often desirable in a noisy environment or when the differential inputs are very small or slow moving. The transfer function for a comparator with hysteresis is shown in Figure 27. If the input voltage approaches the threshold from the negative direction, the comparator switches from a low to a high when the input crosses $+\mathrm{V}_{\mathrm{H}} / 2$. The new switching threshold becomes $-\mathrm{V}_{\mathrm{H}} / 2$. The comparator remains in the high state until the threshold $-\mathrm{V}_{\mathrm{H}} / 2$ is crossed from the positive direction. In this manner, noise centered on 0 V input does not cause the comparator to switch states unless it exceeds the region bounded by $\pm \mathrm{V}_{\mathrm{H}} / 2$.
The customary technique for introducing hysteresis into a comparator uses positive feedback from the output back to the input. A limitation of this approach is that the amount of hysteresis varies with the output logic levels, resulting in hysteresis that is not symmetric about the threshold. The external feedback network can also introduce significant parasitics that reduce high speed performance and can even reduce overall stability in some cases.

Figure 27. Comparator Hysteresis Transfer Function
The ADCMP580/ADCMP581/ADCMP582 family of comparators offers a programmable hysteresis feature that can significantly improve the accuracy and stability of the desired hysteresis. By connecting an external pull-down resistor from the HYS pin to $V_{\text {EE, }}$, variable amount of hysteresis can be applied. Leaving the HYS pin disconnected disables the feature, and hysteresis is then less than 1 mV , as specified. The maximum range of hysteresis that can be applied by using this method is approximately $\pm 70 \mathrm{mV}$.
Figure 28 illustrates the amount of applied hysteresis as a function of the external resistor value. The advantage of applying hysteresis in this manner is improved accuracy, stability, and reduced component count. An external bypass capacitor is not required on the HYS pin, and it would likely degrade the jitter performance of the device.

The hysteresis pin can also be driven by a current source. It is biased approximately 400 mV above V_{EE} and has an internal series resistance of approximately 600Ω.

Figure 28. Comparator Hysteresis vs. Rhys Control Resistor

MINIMUM INPUT SLEW RATE REQUIREMENT

As with many high speed comparators, a minimum slew rate requirement must be met to ensure that the device does not oscillate as the input signal crosses the threshold. This oscillation is due in part to the high input bandwidth of the comparator and the feedback parasitics inherent in the package. A minimum slew rate of $50 \mathrm{~V} / \mu \mathrm{s}$ must ensure clean output transitions from the ADCMP580/ADCMP581/ADCMP582 family of comparators.
The slew rate may be too slow for other reasons. The extremely high bandwidth of these devices means that broadband noise can be a significant factor when input slew rates are low. There is $120 \mu \mathrm{~V}$ of thermal noise generated over the bandwidth of the comparator by the two 50Ω terminations at room temperature. With a slew rate of only $50 \mathrm{~V} / \mu \mathrm{s}$, the inputs are inside this noise band for over 2 ps , rendering the comparator's jitter performance of 200 fs irrelevant. Raising the slew rate of the input signal and/or reducing the bandwidth over which that resistance is seen at the input can greatly reduce jitter. Devices are not characterized this way but simply bypassing a reference input close to the package can reduce jitter 30\% in low slew rate applications.

ADCMP580/ADCMP581/ADCMP582

OUTLINE DIMENSIONS

1
Figure 29. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-16-21)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADCMP580BCPZ-WP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21	G 12
ADCMP580BCPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21	G12
ADCMP580BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21	G12
ADCMP581BCPZ-WP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21	G11
ADCMP581BCPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21	G11
ADCMP581BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21	G11
ADCMP582BCPZ-WP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21	G10
ADCMP582BCPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21	G10
ADCMP582BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21	G10
EVAL-ADCMP580BCPZ		Evaluation Board		
EVAL-ADCMP581BCPZ		Evaluation Board		
EVAL-ADCMP582BCPZ		Evaluation Board		

[^1]
NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
EVAL-ADCMP566BCPZ EVAL-ADCMP606BKSZ AD8013AR-14-EBZ AD8033AKS-EBZ AD8044AR-EBZ AD8225-EVALZ ADA4859-3ACP-EBZ ADA4862-3YR-EBZ DEM-OPA-SO-2B AD744JR-EBZ AD8023AR-EBZ AD8030ARJ-EBZ AD8040ARU-EBZ AD8073JR-EBZ AD813AR-14-EBZ AD848JR-EBZ ADA4858-3ACP-EBZ ADA4922-1ACP-EBZ 551600075-001/NOPB DEM-OPA-SO2E THS7374EVM EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ MAX9928EVKIT+ MAX9636EVKIT+ MAX9611EVKIT MAX9937EVKIT+ MAX9934TEVKIT+ MAX44290EVKIT\# MAX2644EVKIT MAX2634EVKIT MAX4073EVKIT+ DEM-OPA-SO-2C MAX2643EVKIT ISL28158EVAL1Z MAX40003EVKIT\# MAX2473EVKIT MAX2472EVKIT MAX4223EVKIT MAX9700BEVKIT MADL-011014-001SMB DC1685A DEM-OPA-SO-2D MAX2670EVKIT\# DEM-OPA-SO-1E AD8137YCP-EBZ EVAL-ADA4523-1ARMZ MAX44242EVKIT\#

[^0]: ${ }^{1}$ Equivalent input bandwidth assumes a simple first-order input response and is calculated with the following formula: $B W_{E Q}=0.22 /\left(\operatorname{trcomp}^{2}-\operatorname{triN}^{2}\right)$, where $\operatorname{tr}^{\prime}$ is the $20 / 80$ transition time of a quasi-Gaussian input edge applied to the comparator input and trcomp is the effective transition time digitized by the comparator

[^1]: ${ }^{1} Z=$ RoHS Compliant Part.

