

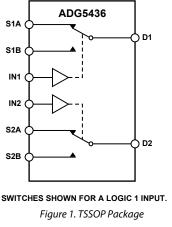
High Voltage Latch-Up Proof, Dual SPDT Switches

Data Sheet ADG5436

FEATURES

Latch-up proof 8 kV HBM ESD rating Low on resistance ($<10\,\Omega$) ±9 V to ±22 V dual-supply operation 9 V to 40 V single-supply operation 48 V supply maximum ratings Fully specified at ±15 V, ±20 V, ±12 V, and ±36 V V_{SS} to V_{DD} analog signal range

APPLICATIONS


Relay replacement
Automatic test equipment
Data acquisition
Instrumentation
Avionics
Audio and video switching
Communication systems

GENERAL DESCRIPTION

The ADG5436 is a monolithic CMOS device containing two independently selectable single-pole/double-throw (SPDT) switches. An EN input on the LFCSP package enables or disables the device. When disabled, all channels switch off. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. Both switches exhibit break-before-make switching action for use in multiplexer applications.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals.

FUNCTIONAL BLOCK DIAGRAMS

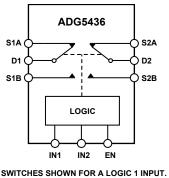


Figure 2. LFCSP Package

PRODUCT HIGHLIGHTS

- Trench isolation guards against latch-up. A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
- 2. Low Ron.
- 3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5436 can be operated from dual supplies up to ± 22 V.
- 4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5436 can be operated from a single-rail power supply up to 40 V.
- 5. 3 V logic compatible digital inputs: $V_{\rm INH}$ = 2.0 V, $V_{\rm INL}$ = 0.8 V.
- 6. No V_L logic power supply required.

TABLE OF CONTENTS

1 Catures
Applications1
Functional Block Diagrams1
General Description1
Product Highlights1
Revision History2
Specifications3
±15 V Dual Supply3
±20 V Dual Supply4
12 V Single Supply5
36 V Single Supply6
Continuous Current per Channel, Sx or Dx
REVISION HISTORY
11/2017—Rev. B to Rev. C
Changes to Source Off Leakage, I_s (Off) Parameter, Table 1 3 Changes to Source Off Leakage, I_s (Off) Parameter, Table 2 4 Changes to Source Off Leakage, I_s (Off) Parameter, Table 3 5 Changes to Source Off Leakage, I_s (Off) Parameter, Table 4 6 Updated Outline Dimensions
8/2015—Rev. A to Rev. B Changes to General Description Section

Absolute Maximum Ratings	8
ESD Caution	8
Pin Configurations and Function Descriptions	9
Truth Table For Switches	9
Typical Performance Characteristics	10
Test Circuits	14
Terminology	16
Trench Isolation	17
Applications Information	18
Outline Dimensions	19
Ordering Guide	19

6/2011—Rev. 0 to Rev. A

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, Ron	9.8			Ω typ	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}; \text{ see Figure 25}$
	11	14	16	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.35			Ωtyp	$V_S = \pm 10 \text{ V}$, $I_S = -10 \text{ mA}$
	0.7	0.9	1.1	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	1.2			Ω typ	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
	1.6	2	2.2	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, I₅ (Off)	±0.05			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 28}$
	±0.25	±0.75	±6	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 28}$
	±0.4	±2	±12	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.1			nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 24
	±0.4	±2	±12	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002		0.0	μA typ	$V_{IN} = V_{GND}$ or V_{DD}
input current, fine of fine	0.002		±0.1	μA max	VIIV — V GIND OI V DD
Digital Input Capacitance, C _{IN}	5		±0.1	pF typ	
DYNAMIC CHARACTERISTICS ¹				p. 0,p	
Transition Time, t _{TRANSITION}	170			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
THE STATE OF THE S	235	285	316	ns max	$V_S = 10 \text{ V}$; see Figure 31
ton	173			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
-514	230	280	351	ns max	$V_s = 10 \text{ V}$; see Figure 33
t _{OFF}	124			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
2011	160	193	218	ns max	$V_s = 10 \text{ V}$; see Figure 33
Break-Before-Make Time Delay, t _D	55	1,73	210	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
break before make time belay, to	33		18	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 32
Charge Injection, Q _{INJ}	200		.0	pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 34
Off Isolation	-78			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Channel-to-Channel Crosstalk	-58			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Total Harmonic Distortion + Noise	0.009			% typ	R _L = 1 kΩ, 15 V p-p, f = 20 Hz to 20 kHz; see Figure 29
–3 dB Bandwidth	102			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
Insertion Loss	-0.7			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
C _s (Off)	18			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	62			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C_D (On), C_S (On)	83			pF typ	$V_S = 0 V, f = 1 MHz$

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}	45			μA typ	Digital inputs = 0 V or V _{DD}
	55		70	μA max	
Iss	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1	μA max	
V_{DD}/V_{SS}			±9/±22	V min/V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = -20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, R _{ON}	9			Ωtyp	$V_S = \pm 15 \text{ V}, I_S = -10 \text{ mA}; \text{ see Figure 25}$
	10	13	15	Ω max	$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$
On-Resistance Match	0.35			Ωtyp	$V_S = \pm 15 \text{V}$, $I_S = -10 \text{mA}$
Between Channels, ΔR _{ON}					
	0.7	0.9	1.1	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	1.5			Ωtyp	$V_s = \pm 15 \text{ V}, I_s = -10 \text{ mA}$
	1.8	2.2	2.5	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Source Off Leakage, Is (Off)	±0.05			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}; \text{ see Figure 28}$
	±0.25	±0.75	±6	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}; \text{ see Figure 28}$
	±0.4	±2	±12	nA max	_
Channel On Leakage, ID (On), IS (On)	±0.1			nA typ	$V_S = V_D = \pm 15 \text{ V}$; see Figure 24
_	±0.4	±2	±12	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
•			±0.1	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ¹				. ,.	
Transition Time, t _{TRANSITION}	158			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	217	260	293	ns max	V _s = 10 V; see Figure 31
t _{on}	164			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	213	256	287	ns max	$V_s = 10 \text{ V}$; see Figure 33
t _{OFF}	110			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	152	173	194	ns max	V _s = 10 V; see Figure 33
Break-Before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
, , , , , , , , , , , , , , , , , , ,			15	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 32
Charge Injection, Q _{INJ}	250			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see}$
, , , , , , , , , , , , , , , , , , ,				1 - 31	Figure 34
Off Isolation	-78			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Channel-to-Channel Crosstalk	-58			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Total Harmonic Distortion + Noise	0.007			% typ	see Figure 26 $R_L = 1 \text{ k}\Omega$, 20 V p-p, $f = 20 \text{ Hz}$ to 20 kHz;
–3 dB Bandwidth	100			MHz typ	see Figure 29 $R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30

Parameter	25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
Insertion Loss	-0.6			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
					see Figure 30
C _s (Off)	18			pF typ	$V_S = 0 V, f = 1 MHz$
C _D (Off)	63			pF typ	$V_S = 0 V, f = 1 MHz$
C_D (On), C_S (On)	82			pF typ	$V_S = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
I_{DD}	50			μA typ	Digital inputs = 0 V or V_{DD}
	70		110	μA max	
I _{SS}	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1	μA max	
V_{DD}/V_{SS}			±9/±22	V min/V max	GND = 0 V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0V$ to V_{DD}	V	
On Resistance, R _{ON}	19			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -10 \text{ mA; see}$ Figure 25
	22	27	31	Ω max	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On-Resistance Match Between Channels, ΔR _{ON}	0.4			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -10 \text{ mA}$
	0.8	1	1.2	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	4.4			Ωtyp	$V_S = 0 V \text{ to } 10 V, I_S = -10 \text{ mA}$
	5.5	6.5	7.5	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.05			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$ see Figure 28
	±0.25	±0.75	±6	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$ see Figure 28
	±0.4	±2	±12	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.1			nA typ	$V_S = V_D = 1 \text{ V}/10 \text{ V}$; see Figure 24
	±0.4	±2	±12	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, ttransition	250			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	346	437	501	ns max	$V_S = 8 V$; see Figure 31
ton	250			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	358	445	512	ns max	$V_S = 8 V$; see Figure 33
toff	135			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	178	212	237	ns max	$V_s = 8 V$; see Figure 33
Break-Before-Make Time Delay, t _D	125			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			50	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 32
Charge Injection, Q _{INJ}	80			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see}$ Figure 34

Parameter	25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
Off Isolation	-78			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Channel-to-Channel Crosstalk	-58			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Total Harmonic Distortion + Noise	0.075			% typ	$R_L = 1 \text{ k}\Omega$, 6 V p-p, $f = 20 \text{ Hz}$ to 20 kHz; see Figure 29
−3 dB Bandwidth	106			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
Insertion Loss	-1.3			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
C _s (Off)	22			pF typ	$V_S = 6 V, f = 1 MHz$
C _D (Off)	67			pF typ	$V_{S} = 6 V, f = 1 MHz$
C_D (On), C_S (On)	85			pF typ	$V_S = 6 V, f = 1 MHz$
POWER REQUIREMENTS					V _{DD} = 13.2 V
I _{DD}	40			μA typ	Digital inputs = 0 V or V _{DD}
	50		65	μA max	
V_{DD}			9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

¹ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0V$ to V_{DD}	V	
On Resistance, R _{ON}	10.6			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -10 \text{ mA;}$ see Figure 25
	12	15	17	Ω max	$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR _{ON}	0.35			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -10 \text{ mA}$
	0.7	0.9	1.1	Ω max	
On-Resistance Flatness, RFLAT(ON)	2.7			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -10 \text{ mA}$
	3.2	3.8	4.5	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.05			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V};$ see Figure 28
	±0.25	±0.75	±6	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V};$ see Figure 28
	±0.4	±2	±12	nA max	
Channel On Leakage, ID (On), Is (On)	±0.1			nA typ	$V_S = V_D = 1 \text{ V}/30 \text{ V}$; see Figure 24
	±0.4	±2	±12	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	

Parameter	25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	174			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	246	270	303	ns max	V _s = 18 V; see Figure 31
ton	180			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	247	270	301	ns max	V _s = 18 V; see Figure 33
toff	127			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	179	193	215	ns max	V _s = 18 V; see Figure 33
Break-Before-Make Time Delay, t _D	55			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			18	ns min	$V_{S1} = V_{S2} = 18 \text{ V}$; see Figure 32
Charge Injection, Q _{INJ}	250			pC typ	$V_S = 18 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
					see Figure 34
Off Isolation	-78			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Channel-to-Channel Crosstalk	-58			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Total Harmonic Distortion + Noise	0.03			% typ	R _L = 1 kΩ, 18 V p-p, f = 20 Hz to 20 kHz; see Figure 29
–3 dB Bandwidth	98			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
Insertion Loss	-0.8			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
C _s (Off)	19			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	40			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
C_D (On), C_S (On)	78			pF typ	$V_S = 18 \text{V, f} = 1 \text{MHz}$
POWER REQUIREMENTS					$V_{DD} = 39.6 \text{ V}$
I_{DD}	80			μA typ	Digital inputs = 0 V or V _{DD}
	100		130	μA max	- ·
V_{DD}			9/40	V min/V max	$GND = 0 V$, $V_{SS} = 0 V$

¹ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx

Table 5.

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, Sx OR Dx				
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	122	77	44	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	217	116	53	mA maximum
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	130	80	45	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	229	121	54	mA maximum
$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	84	56	36	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	150	90	48	mA maximum
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	110	70	42	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	196	109	52	mA maximum

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

Rating
48 V
−0.3 V to +48 V
+0.3 V to -48 V
$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
375 mA (pulsed at 1 ms, 10% duty cycle maximum)
Data + 15%
-40°C to +125°C
−65°C to +150°C
150°C
112°C/W
30.4°C/W
260(+0/-5)°C

¹ Overvoltages at the INx, Sx, and Dx pins are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See Table 5.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

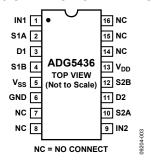


Figure 3. TSSOP Pin Configuration

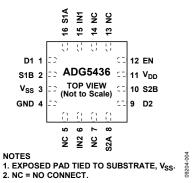


Figure 4. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.				
TSSOP	LFCSP	Mnemonic	Function	
1	15	IN1	Logic Control Input 1.	
2	16	S1A	Source Terminal 1A. This pin can be an input or output.	
3	1	D1	Drain Terminal 1. This pin can be an input or output.	
4	2	S1B	Source Terminal 1B. This pin can be an input or output.	
5	3	V_{SS}	Most Negative Power Supply Potential.	
6	4	GND	Ground (0 V) Reference.	
7, 8, 14 to 16	5, 7, 13, 14	NC	No Connect.	
9	6	IN2	Logic Control Input 2.	
10	8	S2A	Source Terminal 2A. This pin can be an input or output.	
11	9	D2	Drain Terminal 2. This pin can be an input or output.	
12	10	S2B	Source Terminal 2B. This pin can be an input or output.	
13	11	V_{DD}	Most Positive Power Supply Potential.	
Not applicable	12	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, INx logic inputs determine the on switches.	
Not applicable		EPAD	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, Vss.	

TRUTH TABLE FOR SWITCHES

Table 8. ADG5436 TSSOP Truth Table

INx	SxA	SxB
0	Off	On
1	On	Off

Table 9. ADG5436 LFCSP Truth Table

EN	INx	SxA	SxB
0	X ¹	Off	Off
1	0	Off	On
1	1	On	Off

¹ X is don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

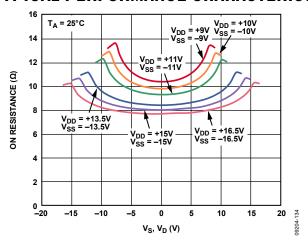


Figure 5. On Resistance vs. V_S , V_D (Dual Supply)

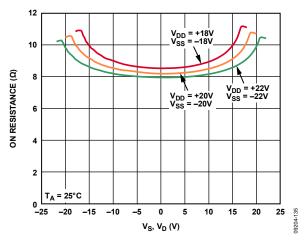


Figure 6. On Resistance vs. V_S , V_D (Dual Supply) Included

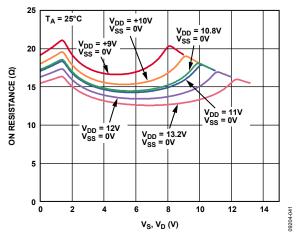


Figure 7. On Resistance vs. Vs, VD (Single Supply)

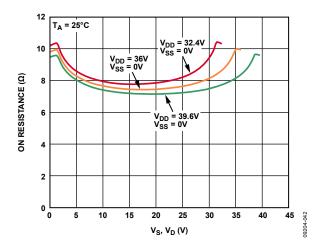


Figure 8. On Resistance vs. V_S , V_D (Single Supply)

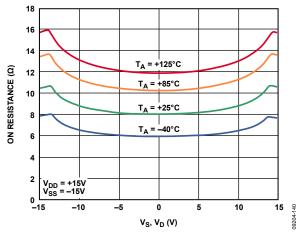


Figure 9. On Resistance vs. V_D or V_S for Different Temperatures, ± 15 V Dual Supply

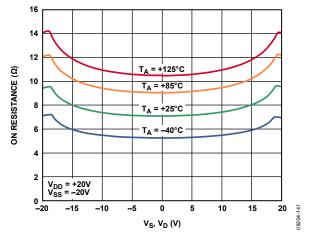


Figure 10. On Resistance vs. V_D or V_S for Different Temperatures, ± 20 V Dual Supply

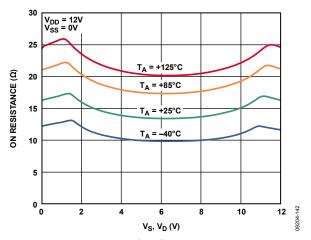


Figure 11. On Resistance vs. V_D or V_S for Different Temperatures, 12 V Single Supply

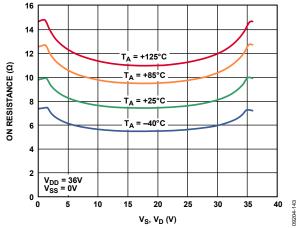


Figure 12. On Resistance vs. $V_S(V_D)$ for Different Temperatures, 36 V Single Supply

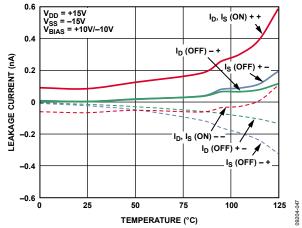


Figure 13. Leakage Currents vs. Temperature, ±15 V Dual Supply

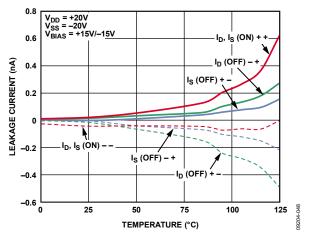


Figure 14. Leakage Currents vs. Temperature, ±20 V Single Supply

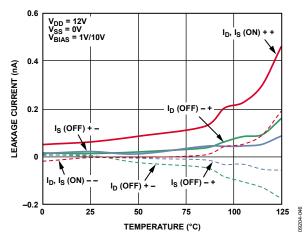


Figure 15. Leakage Currents vs. Temperature, 12 V Single Supply

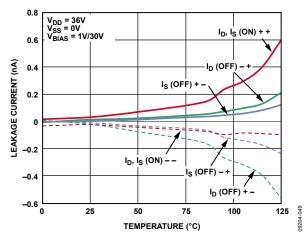


Figure 16. Leakage Currents vs. Temperature, 36 V Single Supply

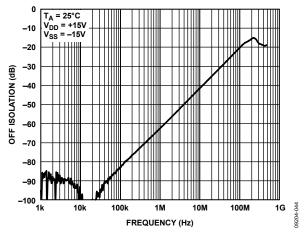


Figure 17. Off Isolation vs. Frequency

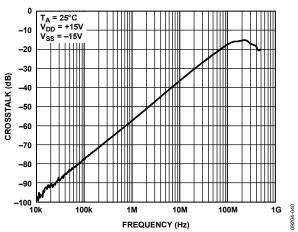


Figure 18. Crosstalk vs. Frequency

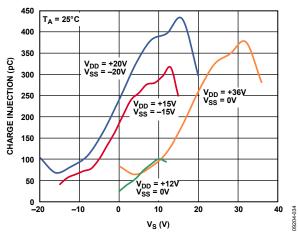


Figure 19. Charge Injection vs. Source Voltage

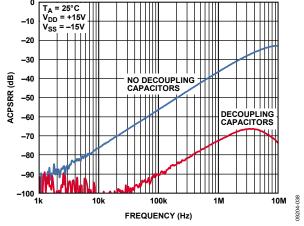


Figure 20. ACPSRR vs. Frequency

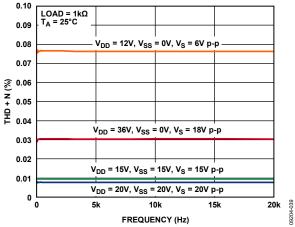


Figure 21. THD + N vs. Frequency

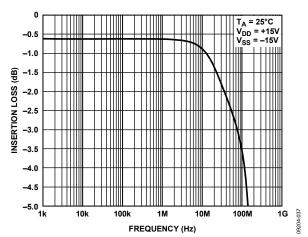
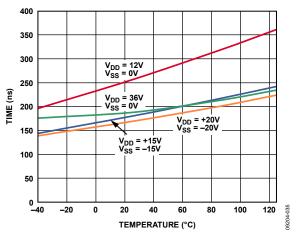



Figure 22. Bandwidth

 $\textit{Figure 23.} \ \textit{t}_{\textit{TRANSITION}} \ \textit{Time vs.} \ \textit{Temperature}$

TEST CIRCUITS

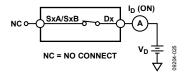


Figure 24. On Leakage

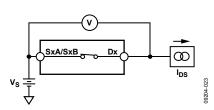


Figure 25. On Resistance

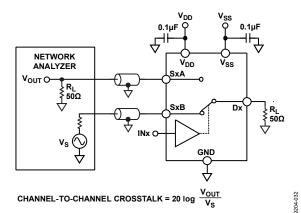


Figure 26. Channel-to-Channel Crosstalk

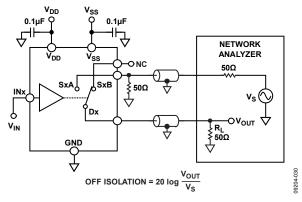


Figure 27. Off Isolation

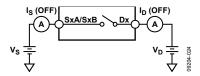


Figure 28. Off Leakage

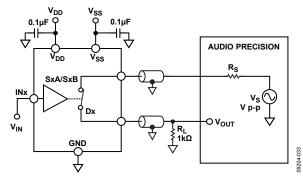


Figure 29. THD + Noise

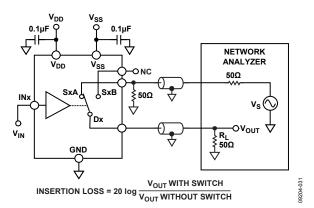


Figure 30. Bandwidth

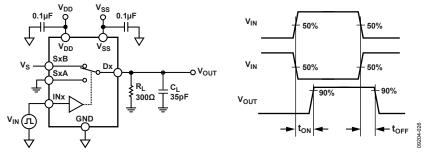


Figure 31. Switching Times

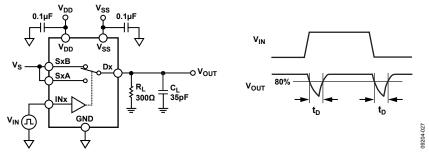


Figure 32. Break-Before-Make Time Delay t_D

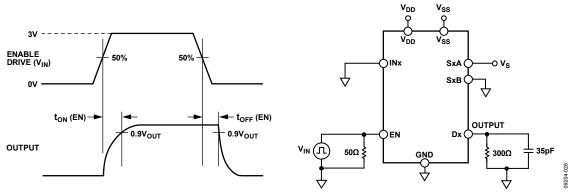


Figure 33. Enable Delay, ton (EN), toff (EN)

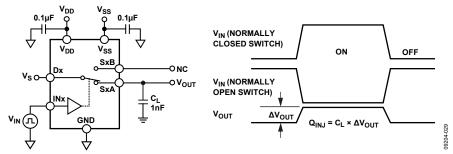


Figure 34. Charge Injection

TERMINOLOGY

Inn

I_{DD} represents the positive supply current.

I_{SS}

Iss represents the negative supply current.

V_D, V_S

 V_D and V_S represent the analog voltage on Terminal D and Terminal S, respectively.

Ron

 R_{ON} represents the ohmic resistance between Terminal D and Terminal S.

ΔR_{ON}

 $\Delta R_{\rm ON}$ represents the difference between the $R_{\rm ON}$ of any two channels.

R_{FLAT (ON)}

Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range is represented by $R_{\rm FLAT \, (ON)}$.

Is (Off)

Is (Off) is the source leakage current with the switch off.

ID (Off)

I_D (Off) is the drain leakage current with the switch off.

I_D (On), I_S (On)

 $I_{\text{D}}\left(On\right)$ and $I_{\text{S}}\left(On\right)$ represent the channel leakage currents with the switch on.

\mathbf{V}_{INL}

 $V_{\mbox{\scriptsize INL}}$ is the maximum input voltage for Logic 0.

V_{INH}

 V_{INH} is the minimum input voltage for Logic 1.

I_{INL} , I_{INH}

 I_{INL} and I_{INH} represent the low and high input currents of the digital inputs.

C_D (Off)

C_D (Off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)

C_S (Off) represents the off switch source capacitance, which is measured with reference to ground.

C_D (On), C_S (On)

 C_D (On) and C_S (On) represent on switch capacitances, which are measured with reference to ground.

C_{IN}

C_{IN} is the digital input capacitance.

ton

 t_{ON} represents the delay between applying the digital control input and the output switching on.

tori

t_{OFF} represents the delay between applying the digital control input and the output switching off.

tn

 t_{D} represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB.

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD + N.

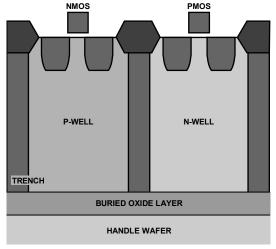
AC Power Supply Rejection Ratio (ACPSRR)

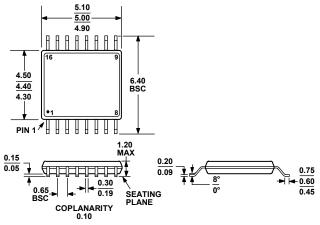
ACPSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62~V p-p.

TRENCH ISOLATION

In the ADG5436, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.




Figure 35. Trench Isolation

APPLICATIONS INFORMATION

The Analog Devices, Inc., family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persist until the power supply is turned off. The ADG5436 high voltage switches allow single-

supply operation from ± 9 V to ± 40 V and dual-supply operation from ± 9 V to ± 22 V. The ADG5436 (as well as other select devices within this family) achieves an 8 kV human body model ESD rating, which provides a robust solution eliminating the need for separate protect circuitry designs in some applications.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 36. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

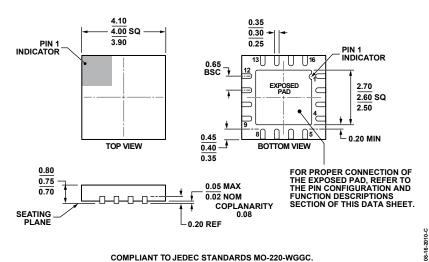


Figure 37. 16-Lead Lead Frame Chip Scale Package [LFCSP]

4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-17)

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG5436BRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5436BRUZ-REEL7	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5436BCPZ-REEL7	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-17

 $^{^{1}}$ Z = RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switch IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

EVAL-8MSOPEBZ TPS2061EVM-292 MAX4993EVKIT+ ISL54059EVAL1Z MAX4989EVKIT+ MAX14983EEVKIT#

MAX14589EEVKIT# TPS2041BEVM TPS2041BEVM-292 TPS2051BEVM TPS2560DRCEVM-424 TSU6721EVM BOB-09056 EKIT01
HMC1027BG TPS2561DRCEVM-424 2717 ISL54220IRUEVAL1Z TS3USB221AEVM 126968-HMC857LC5 EVAL-ADGS1212SDZ

TPS22924CEVM-532 ASL1101 SIP32102EVB DC858A DC892A-B EVAL-10MSOPEBZ EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ

EVAL-28TSSOPEBZ EVAL-5SC70EBZ EVAL-ADG4612EBZ EVAL-ADG5243FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z

EVAL-ADG5412BFEBZ EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVAL-ADG884EBZ EVAL-ADG888EBZ EVAL-ADGS1208SDZ EVAL-ADGS1209SDZ EVAL-ADGS1409SDZ EVAL-ADGS1412SDZ EVAL-ADGS5414SDZ DFR0576 DG1208EVKIT# DG1209EVKIT#