Data Sheet

FEATURES

Extreme high temperature operation Specified temperature range $-55^{\circ} \mathrm{C}$ to $+210^{\circ} \mathrm{C}$ (16-lead FLATPACK) $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ (16-lead TSSOP)
 3.0 V to 5.5 V single supply
 $\pm 2.5 \mathrm{~V}$ dual supply
 10Ω on resistance, maximum
 2Ω on-resistance flatness, maximum
 12 ns switching times
 Single 8:1 multiplexer
 Low power consumption
 TTL-/CMOS-compatible inputs
 APPLICATIONS
 Downhole drilling and instrumentation
 Avionics
 Heavy industrial
 High temperature environments
 GENERAL DESCRIPTION

The ADG798 is a low voltage, CMOS, analog multiplexer designed to operate at very high temperatures up to $210^{\circ} \mathrm{C}$. The ADG798 switches one of eight inputs (S 1 to S 8) to a common output, D , as determined by the 3-bit binary address lines A0, A1, and A2. An EN input on the device enables or disables the device. When the device is disabled, all channels are switched off.

The ADG798 features low power consumption and a 3.3 V to 5.5 V operating supply range. All channels exhibit break-beforemake switching action, preventing momentary shorting when switching channels. These switches are designed with an enhanced submicron process that provides low power dissipation, high switching speed, and very low on resistance.

The on resistance (Ron) is a maximum of 10Ω and is closely matched between switches and very flat over the full signal range. The ADG798 operates equally well as either a multiplexer or a demultiplexer and has an input signal range that extends to the supplies.

This mux is available in a 16-lead ceramic flat package (FLATPACK) and a 16-lead ceramic flat package with reverse formed gullwing leads (FLATPACK_RF). Both of the flat

Figure 1.
packages have an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+210^{\circ} \mathrm{C}$. A 16-lead TSSOP package is also available that has an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$. All packages are designed for robustness at extreme temperatures, and are qualified for 1000 hours of continuous operation at the maximum temperature rating.

The ADG798 is a member of a growing series of high temperature qualified products offered by Analog Devices, Inc. For a complete selection table of available high temperature products, see the high temperature product list and qualification data available at http://www.analog.com/hightemp.

PRODUCT HIGHLIGHTS

1. Single-Supply/Dual-Supply Operation. The ADG798 is fully specified and guaranteed with 3.3 V and 5 V single-supply rails and $\pm 2.5 \mathrm{~V}$ dual-supply rails.
2. Low Ron.

The Ron of the ADG798 is specified at 5Ω, typical, at $210^{\circ} \mathrm{C}$.
3. Low Power Consumption.

The power consumption of the ADG798 is specified at $<0.01 \mu \mathrm{~W}$.
4. Guaranteed Break-Before-Make Switching Action.

[^0]
TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications. 3
Dual Supply 7
Continuous Current per Channel, Sx or D 8
Absolute Maximum Ratings 9
Thermal Resistance 9
ESD Caution 9
REVISION HISTORY
6/2018-Rev. 0 to Rev. A
Added TSSOP Package Universal
Changes to Features 1
Changes to General Description 1
Changes to Specifications, Table 1 3
Changes to Specifications, Table 2 5
Changes to Specifications, Table 3. 7
Changes to Specifications, Table 4. 8
Added TSSOP Operating Temperature Range and Junction Temperature Range, Table 5 9
Added RU-16 Thermal Characteristics, Table 6. 9
Changes to Figure 2 Caption 10
9/2016—Revision 0: Initial Version
Pin Configuration and Function Descriptions 10
Truth Table 10
Typical Performance Characteristics. 11
Test Circuits 15
Terminology 18
Theory of Operation 19
Applications Information 20
Power Supply Sequencing 20
Outline Dimensions 21
Ordering Guide 22

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. TSSOP temperature range $=-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+175^{\circ} \mathrm{C}$ and FLATPACK temperature range $=-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+210^{\circ} \mathrm{C}$, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments ${ }^{1}$	TSSOP			FLATPACK			Unit
			Min	Typ ${ }^{\text {2 }}$	Max	Min	Typ ${ }^{2}$	Max	
Drain Capacitance, Off	$C_{\text {D }}$ (Off)	$\mathrm{f}=1 \mathrm{MHz}$		85			85		pF
Source/Drain Capacitance, On	$\begin{aligned} & C_{D}(O n), \\ & C_{s}(O n) \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$		96			96		pF
POWER REQUIREMENTS Supply Current	IDD	$V_{D D}=5.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or 5.5 V		5	35		40	70	$\mu \mathrm{A}$

${ }^{1}$ The ADG798 is qualified for a minimum of 1000 hours of continuous operation at the maximum temperature rating.
${ }^{2} T_{A}=25^{\circ} \mathrm{C}$, except for the analog switch and power requirements values where $\mathrm{T}_{\mathrm{A}}=175^{\circ} \mathrm{C}$ (TSSOP only) or $210^{\circ} \mathrm{C}$ (FLATPACK only). ${ }^{3}$ Guaranteed by design, not subject to production test.
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. TSSOP temperature range $=-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+175^{\circ} \mathrm{C}$ and FLATPACK temperature range $=-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+210^{\circ} \mathrm{C}$, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments ${ }^{1}$	TSSOP			FLATPACK			Unit
			Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
POWER REQUIREMENTS		$\mathrm{V}_{\text {DD }}=3.63 \mathrm{~V}$							
Supply Current	IDD	Digital inputs $=0 \mathrm{~V}$ or 3.63 V		5	35		40	70	$\mu \mathrm{A}$

${ }^{1}$ The ADG798 is qualified for a minimum of 1000 hours of continuous operation at the maximum temperature rating.
${ }^{2} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, except for the analog switch and power requirements values where $\mathrm{T}_{\mathrm{A}}=175^{\circ} \mathrm{C}$ (TSSOP only) or $210^{\circ} \mathrm{C}$ (FLATPACK only).
${ }^{3}$ Guaranteed by design, not subject to production test.

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-2.5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. TSSOP temperature range $=-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+175^{\circ} \mathrm{C}$ and FLATPACK temperature range $=-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+210^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Symbol	Test Conditions/Comments ${ }^{1}$	TSSOP			FLATPACK			Unit
			Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
Drain Capacitance, Off	C_{D} (Off)	$\mathrm{f}=1 \mathrm{MHz}$	85			85			pF
Source/Drain Capacitance, On	$\begin{aligned} & C_{D}(O n), C_{S} \\ & (O n) \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$		96			96		pF
POWER REQUIREMENTS Supply Current	IDDISS	$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}$							$\mu \mathrm{A}$ $\mu \mathrm{A}$
		Digital inputs $=0 \mathrm{~V}$ or 2.75 V			35		40	70	
		$\mathrm{V}_{\mathrm{ss}}=-2.75 \mathrm{~V}$; digital inputs $=0 \mathrm{~V}$ or 2.75 V						70	

${ }^{1}$ The ADG798 is qualified for a minimum of 1000 hours of continuous operation at the maximum temperature rating.
${ }^{2} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, except for the analog switch and power requirements values where $\mathrm{T}_{\mathrm{A}}=175^{\circ} \mathrm{C}$ (TSSOP) or $210^{\circ} \mathrm{C}$ (FLATPACK).
${ }^{3}$ Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR D

Table 4.

Parameter	$175^{\circ} \mathrm{C}$	$210^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR D			
FLATPACK $\theta^{\prime} \mathrm{A}=70^{\circ} \mathrm{C} / \mathrm{W}$			
$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	30	30	mA maximum
$V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	30	30	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-2.5 \mathrm{~V}$	30	30	mA maximum
TSSOP $\theta_{\mathrm{JA}}=109.6^{\circ} \mathrm{C} / \mathrm{W}$			
$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	30		mA maximum
$\mathrm{V}_{\text {DD }}=3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	30		mA maximum
$\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \mathrm{~V}_{S S}=-2.5 \mathrm{~V}$	30		mA maximum

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 5.

Parameter	Rating
$V_{\text {DD }}$ to $V_{\text {SS }}$	7V
V ${ }_{\text {d }}$ to GND	-0.3 V to +7 V
$V_{\text {ss }}$ to GND	+0.3 V to -3.5 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, Sx or D (Pulsed at 1 ms , 10\% Duty Cycle Maximum)	94.9 mA
Continuous Current, Sx or D ${ }^{2}$	Data $+5 \%$
Operating Temperature Range	
TSSOP	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
FLATPACK	$-55^{\circ} \mathrm{C}$ to $+210^{\circ} \mathrm{C}$
Junction Temperature	
TSSOP	$180^{\circ} \mathrm{C}$
FLATPACK	$211^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at Ax, EN, Sx, or D are clamped by internal codes. Limit the current to the maximum ratings given.
${ }^{2}$ See Table 4.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to PCB design and operating environment. Close attention to PCB thermal design is required.

Table 6. Thermal Resistance

Package Type 1	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathbf{\prime}}$	Unit
F-16-1	70	22	${ }^{\circ} \mathrm{C} / \mathrm{W}$
FR-16-1	70	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
RU-16	109.6	36.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Thermal impedance simulated values are based on a JEDEC $2 s 2 p$ thermal test board. See JEDEC JESD51.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. TSSOP and FLATPACK Pin Configuration

Figure 3. Reversed Formed FLATPACK Pin Configuration

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Digital Input. This pin controls the configuration of the switch, as shown in the truth table (see Table 8).
2	EN	Digital Input. This pin controls the configuration of the switch, as shown in the truth table (see Table 8).
3	VSS 2	Most Negative Power Supply Pin in Dual-Supply Applications. For single-supply applications, tie this pin to GND.
4	S1	Source Terminal. This pin can be an input or output.
5	S2	Source Terminal. This pin can be an input or output.
6	S3	Source Terminal. This pin can be an input or output.
7	S4	Source Terminal. This pin can be an input or output.
8	D	Drain Terminal. This pin can be an input or output.
9	S8	Source Terminal. This pin can be an input or output.
10	S7	Source Terminal. This pin can be an input or output.
11	S6	Source Terminal. This pin can be an input or output.
12	S5	Source Terminal. This pin can be an input or output.
13	VDD	Most Positive Power Supply Pin.
14	GND	Ground (0 V) Reference.
15	A2	Digital Input. This pin controls the configuration of the switch, as shown in the truth table (see Table 8).
16	A1	Digital Input. This pin controls the configuration of the switch, as shown in the truth table (see Table 8).

TRUTH TABLE

Table 8. Truth Table

A2	A1	A0	EN	Switch Condition
X^{1}	X^{1}	X^{1}	0	None
0	0	0	1	S 1
0	0	1	1	S 2
0	1	0	1	S 3
0	1	1	1	S 4
1	0	0	1	S 5
1	0	1	S	
1	1	0	1	$\mathrm{S7}$
1	1	1	1	S 8

[^1]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 6. On Resistance as a Function of V_{S}, V_{D} for Different Temperatures, 5 V Single Supply

Figure 7. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 3.3 V Single Supply

Figure 8. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 2.5 V Dual Supply

Figure 9. Leakage Current as a Function of $V_{D}\left(V_{S}\right)$

Figure 10. Leakage Current as a Function of $V_{D}\left(V_{S}\right)$

Figure 11. Leakage Current as a Function of $V_{D}\left(V_{S}\right)$

Figure 12. Leakage Current as a Function of Temperature, $V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

Figure 13. Leakage Current as a Function of Temperature, $V_{D D}=+2.5 \mathrm{~V}$, $V_{s s}=-2.5 \mathrm{~V}$

Figure 14. Leakage Current vs. Temperature, $V_{D D}=5 \mathrm{~V}$

Figure 15. Supply Current vs. Input Switching Frequency

Figure 16. Off Isolation vs. Frequency

Figure 17. Crosstalk vs. Frequency

Figure 18. On Response vs. Frequency

Figure 19. Charge Injection as a Function of $V_{S}\left(V_{D}\right)$ for Various Temperatures, 5 V Single Supply

Figure 20. Charge Injection as a Function of $V_{S}\left(V_{D}\right)$ for Various Temperatures, 3.3 V Single Supply

Figure 21. Charge Injection as a Function of $V_{s}\left(V_{D}\right)$ for Various Temperatures, ± 2.5 V Dual Supply

Figure 22. Charge Injection (QiNs) vs. Source Voltage

Figure 23. Break-Before-Make Time vs. Temperature

TEST CIRCUITS

Figure 24. On Resistance

Figure 25. Is (Off)

Figure 26. ID (Off)

Figure 27. $I_{D}(O n)$

Figure 28. Switching Time of Multiplexer, $t_{\text {transition }}$

$v_{\text {out }}$

Figure 29. Break-Before-Make Delay, topen

Figure 30. Enable Delay, toN (EN), toff (EN)

Figure 31. Charge Injection

OFF ISOLATION $=20 \log \frac{v_{\text {OUT }}}{v_{S}}$
Figure 32. Off Isolation

Figure 33. Channel to Channel Crosstalk
Data Sheet ADG798

INSERTION LOSS $=20 \log \frac{v_{\text {OUT }} \text { WITH SWITCH }}{v_{\text {OUT }} \text { WITHOUT SWITCH }}$

Figure 34. $-3 d B$ Bandwidth

TERMINOLOGY

$V_{D D}$

V_{DD} is the most positive power supply potential.

Vss

$\mathrm{V}_{\text {SS }}$ is the most negative power supply in a dual-supply application. In single-supply applications, tie $\mathrm{V}_{\text {ss }}$ to ground at the device.

GND

GND is the ground $(0 \mathrm{~V})$ reference.

Sx

Sx are the source terminals and can be inputs or outputs.

D

D is the drain terminal and can be an input or an output.

Ax

Ax is the logic control input.
EN
EN is the active high enable.

$\mathbf{R}_{\text {ON }}$

R_{ON} is the ohmic resistance between D and Sx .
$\mathbf{R}_{\text {flat (on) }}$
$\mathrm{R}_{\mathrm{FLAT} \text { (ON) }}$ flatness is the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I_{s} (Off)
Is (Off) is the source leakage current with the switch off.

I_{D} (Off)

I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$ is the channel leakage current with the switch on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
$V_{D}\left(V_{S}\right)$ is the analog voltage on Terminal D and Terminal $S x$.
C_{s} (Off)
C_{s} (Off) is the off switch source capacitance and is measured with reference to ground.
C_{D} (Off)
C_{D} (Off) is the off switch drain capacitance and is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
$C_{D}, C_{s}(O n)$ is the on switch capacitance and is measured with reference to ground.

$\mathrm{C}_{\text {IN }}$

$\mathrm{C}_{\text {IN }}$ is the digital input capacitance.

t transition

$\mathrm{t}_{\text {transition }}$ is the delay time measured between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
$t_{\text {on }}$ (EN)
$t_{\text {on }}$ (EN) is the delay time between the 50% and 90% points of the EN digital input and the switch on condition.
$t_{\text {off }}$ (EN)
$t_{\text {OFF }}$ (EN) is the delay time between the 50% and 90% points of the EN digital input and the switch off condition.

topen

topen is the off time measured between the 80% points of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Channel to Channel Crosstalk

Channel to channel crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from injection of the digital input to the analog output during switching.

-3 dB Bandwidth

-3 dB bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.

On Loss

On loss is the loss due to the on resistance of the switch.
$V_{\text {INL }}$
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\mathrm{INL}}\left(\mathrm{I}_{\mathrm{INH}}\right)$
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\mathrm{INH}}\right)$ is the input current of the digital input.
$I_{\text {DD }}$
I_{DD} is the positive supply current.

Iss

I_{SS} is the negative supply current.

THEORY OF OPERATION

The ADG798 is a bidirectional, 8:1 CMOS multiplexer designed for very high temperature operation. The device is controlled by four parallel digital inputs (EN, A0, A1, and A2). The EN input allows the ADG798 to be enabled or disabled. When the ADG798 is disabled, the source pins (S 1 to S 8) disconnect from the drain pin (D). When the ADG798 is enabled, the address lines (A0, A1, and A2) can determine which source pin (S1 to S8) is connected to the drain pin (D).

The low on resistance and on-resistance flatness of this device means that there is minimal signal distortion across the entire signal range of the device. This minimal signal distortion, combined with the close on-resistance match between channels,
makes this device ideal for applications where the error due to on resistance is key. The ADG798 also exhibits extremely fast switching times and extremely low power consumption, making the device useful in applications where there is a tight power budget. The ADG798 is compatible with single-supply systems that have a V_{DD} range from 5.5 V to 3.3 V and dual-supply systems at $\pm 2.5 \mathrm{~V}$.

The ADG798 operates in a wide ambient temperature range from $-55^{\circ} \mathrm{C}$ to $+210^{\circ} \mathrm{C}$ (FLATPACK) or $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ (TSSOP), making the ADG798 perfect for use in harsh environments that subject the device to extreme temperature ranges, such as downhole drilling and avionics.

APPLICATIONS INFORMATION

POWER SUPPLY SEQUENCING

When using CMOS devices, take care to ensure correct power supply sequencing. Incorrect power supply sequencing may subject the device to stresses beyond the absolute maximum ratings listed in Table 5.

Always apply digital and analog inputs after power supplies and ground. For single-supply operation, tie $\mathrm{V}_{\text {ss }}$ to GND as close to the device as possible.

Data Sheet

OUTLINE DIMENSIONS

Figure 35. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

Figure 36. 16-Lead Ceramic Flat Package [FLATPACK] (F-16-1)
Dimensions shown in millimeters

ADG798

Figure 37. 16-Lead Ceramic Flat Package with Reverse Formed Gullwing Leads [FLATPACK_RF] Cavity Down (FR-16-1)
Dimensions shown in millimeters

ORDERING GUIDE	Temperature Range	Package Description	Package Option
Model 1	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG798HRUZ	$-55^{\circ} \mathrm{C}$ to $+210^{\circ} \mathrm{C}$	16-Lead Ceramic Flat Package [FLATPACK]	F-16-1
ADG798HFZ	$-55^{\circ} \mathrm{C}$ to $+210^{\circ} \mathrm{C}$	16-Lead Ceramic Flat Package [FLATPACK_RF]	FR-16-1
ADG798HFRZ	Evaluation Board		
EVAL-ADG798EB1Z			

[^2]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-8MSOPEBZ TPS2061EVM-292 MAX4993EVKIT+ ISL54059EVAL1Z MAX4989EVKIT+ MAX14983EEVKIT\# TPS2051BEVM TPS2560DRCEVM-424 TSU6721EVM BOB-09056 EKIT01-HMC1027BG TPS2561DRCEVM-424 2717 ISL54220IRUEVAL1Z
TS3USB221AEVM 126968-HMC857LC5 EVAL-ADGS1212SDZ TPS22924CEVM-532 ASL1101 SIP32102EVB DC858A DC892A-B
EVAL-10MSOPEBZ EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ EVAL-28TSSOPEBZ EVAL-5SC70EBZ EVAL-ADG4612EBZ EVALADG5243FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z EVAL-ADG5412BFEBZ EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ
EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVAL-ADG854EBZ EVAL-ADG884EBZ EVAL-ADG888EBZ EVAL-ADGS1208SDZ
EVAL-ADGS1209SDZ EVAL-ADGS1409SDZ EVAL-ADGS1412SDZ EVAL-ADGS5414SDZ DFR0576 DG1208EVKIT\#
DG1209EVKIT\# MAX12005EVKIT\# MAX14575AEVKIT\# MAX14594EEVKIT\#

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016-2018 Analog Devices, Inc. All rights reserved. Technical Support
 www.analog.com

[^1]: ${ }^{1}$ X means don't care.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

