FEATURES

0.8Ω typical on resistance

Less than 1Ω maximum on resistance at $85^{\circ} \mathrm{C}$
1.8 V to 5.5 V single supply

High current carrying capability: $\mathbf{3 0 0} \mathbf{m A}$ continuous
Rail-to-rail switching operation
Fast-switching times: <17 ns
Typical power consumption: <0.1 $\mu \mathrm{W}$
$1.30 \mathrm{~mm} \times 1.60 \mathrm{~mm}$ mini LFCSP

APPLICATIONS

Cellular phones

PDAs
MP3 players
Power routing
Battery-powered systems
PCMCIA cards

Modems

Audio and video signal routing
Communication systems

GENERAL DESCRIPTION

The ADG854 is a low voltage CMOS device containing two independently selectable single-pole, double-throw (SPDT) switches. This device offers ultralow on resistance of $<1 \Omega$ over the full temperature range. The ADG854 is fully specified for 5.5 V and 3.3 V supply operation.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG854 exhibits break-before-make switching action.
The ADG854 is available in a $1.3 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ 10-lead mini LFCSP.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT

Figure 1.

PRODUCT HIGHLIGHTS

1. $<1 \Omega$ over full temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. Single 1.8 V to 5.5 V operation.
3. Compatible with 1.8 V CMOS logic.
4. High current handling capability: 300 mA continuous current per channel.
5. Low THD $+\mathrm{N}: 0.08 \%$ typical.
6. $\quad 1.30 \mathrm{~mm} \times 1.60 \mathrm{~mm}$ mini LFCSP.

Rev. 0

TABLE OF CONTENTS

Features .. 1
Applications... 1
Functional Block Diagram .. 1
General Description ... 1
Product Highlights .. 1
Revision History .. 2
Specifications... 3
Absolute Maximum Ratings.. 5
ESD Caution 5
Pin Configurations and Function Description 6
Typical Performance Characteristics 7
Test Circuits 10
Terminology 12
Outline Dimensions 13
Ordering Guide 13

REVISION HISTORY

6/08—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron On Resistance Flatness, Rflat (on)	$\begin{aligned} & 0.8 \\ & 0.85 \\ & 0.02 \\ & \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0 \text { to } \mathrm{VDD}_{\mathrm{DD}} \\ & 1 \\ & 0.04 \\ & 0.23 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$V_{D D}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD},}, \mathrm{ldS}=100 \mathrm{~mA}$; see Figure 16 $\begin{aligned} & V_{D D}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD},} \mathrm{IDS}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{l}_{\mathrm{DS}}=100 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Channel On Leakage, ID, IS (On)	$\begin{aligned} & \pm 10 \\ & \pm 30 \end{aligned}$		pA typ pA typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.2 \mathrm{~V} / 0.6 \mathrm{~V} \text {; see Figure } 17 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 4.2 \mathrm{~V} \text {; see Figure } 18 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current lind or linh Digital Input Capacitance, Cl_{I}	$\begin{aligned} & 0.002 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.8 \\ & \\ & 0.05 \end{aligned}$	V min $V_{\text {max }}$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, Іввм Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise, THD + N Insertion Loss -3 dB Bandwidth C_{s} (Off) $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 17 \\ & 23 \\ & 6 \\ & 8.5 \\ & 14 \\ & \\ & 30 \\ & -75 \\ & -85 \\ & \\ & -73 \\ & \\ & 0.08 \\ & -0.06 \\ & 100 \\ & 19.5 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 9.2 \\ & 8 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ \% typ dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 0 \mathrm{~V} ; \text { see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V} \text {; see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { see Figure } 21 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \text {; see Figure } 22 \\ & \mathrm{~S} 1 \mathrm{~A} \text { to } \mathrm{S} 2 \mathrm{~A} / \mathrm{S} 1 \mathrm{~B} \text { to } \mathrm{S} 2 \mathrm{~B}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{f}=100 \mathrm{kHz} \text {; see Figure } 25 \\ & \mathrm{~S} 1 \mathrm{~A} \text { to } \mathrm{S} 1 \mathrm{~B} / \mathrm{S} 2 \mathrm{~A} \text { to } \mathrm{S} 2 \mathrm{~B}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=100 \mathrm{kHz} ; \text { see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 23 \end{aligned}$
POWER REQUIREMENTS IDD	0.002	1.0	μA typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{V} D=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^0]
ADG854

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
V $_{\text {DD }}$ to GND	-0.3 V to +6 V
Analog Inputs 1	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Digital Inputs 1	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or
	10 mA , whichever occurs first
Peak Current per Channel, S or D	500 mA (pulsed at 1 ms,
	10% duty cycle maximum)
Continuous Current per Channel,	300 mA
\quad S or D	
Operating Temperature Range Storage Temperature Range Junction Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
10-Lead Mini LFCSP	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\quad OJA Thermal Impedance, $^{3-\text { Layer Board }}$	$150^{\circ} \mathrm{C}$
Reflow Soldering, Pb-Free	$131.6^{\circ} \mathrm{C} / \mathrm{W}$
\quad Peak Temperature	
Time at Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG854

PIN CONFIGURATION AND FUNCTION DESCRIPTION

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,3,7,9$	S1A, S1B, S2B, S2A	Source Terminal. This pin can be an input or output.
2,8	D1, D2	Drain Terminal. This pin can be an input or output.
4	IN1	Logic Control Input.
5	IN2	Logic Control Input.
6	VDD	Most Positive Power Supply Potential.
10	GND	Ground (0 V) Reference.

Table 5. ADG854 Truth Table

Logic (IN1/IN2)	Switch A (S1A or S2A)	Switch B (S1B or S2B)
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=4.2 \mathrm{~V}$ to 5.5 V

Figure 4. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.7 \mathrm{~V}$ to 3.6 V

Figure 5. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, $V_{D D}=5 \mathrm{~V}$

Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=3.3 \mathrm{~V}$

Figure 7. Leakage Current vs. Temperature, $V_{D D}=5 \mathrm{~V}$

Figure 8. Leakage Current vs. Temperature, $V_{D D}=3.3 \mathrm{~V}$

Figure 9. Charge Injection vs. Source Voltage

Figure 10. ton/toff Times vs. Temperature

Figure 11. Bandwidth

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. Total Harmonic Distortion + Noise $(T H D+N)$ vs. Frequency

ADG854

TEST CIRCUITS

Figure 16. On Resistance

Figure 17. Off Leakage

Figure 18. On Leakage

Figure 19. Switching Times, ton, toff

Figure 20. Break-Before-Make Time Delay, $t_{B B M}$

Figure 21. Charge Injection

Figure 22. Off Isolation

$$
\text { INSERTION LOSS }=20 \log \frac{V_{\text {OUT }} \text { WITH SWITCH }}{V_{\text {OUT }} \text { WITHOUT SWITCH }}
$$

Figure 23. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{VS}}$
Figure 24. Channel-to-Channel Crosstalk (S1A to S1B/S2A to S2B)

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{VS}}$
Figure 25. Channel-to-Channel Crosstalk (S1A to S2A, S1B to S2B)

ADG854

TERMINOLOGY

IDD
Positive supply current.

$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$

Analog voltage on Terminal D and Terminal S.
Ron
Ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {fLat (ON) }}$
The difference between the maximum and minimum values of on resistance as measured on the switch.
Δ Ron
On resistance match between any two channels.
Is (Off)
Source leakage current with the switch off.
I_{D} (Off)
Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
Channel leakage current with the switch on.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
Input current of the digital input.
C_{s} (Off)
Off switch source capacitance. Measured with reference to ground.
C_{D} (Off)
Off switch drain capacitance. Measured with reference to ground.

$\mathrm{C}_{\mathrm{o}}, \mathrm{Cs}$ (On)

On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {In }}$
Digital input capacitance.
$t_{\text {on }}$
Delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {Off }}$
Delay time between the 50% and 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {ввм }}$
On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

Measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation

Measure of unwanted signal coupling through an off switch.

Crosstalk

Measure of unwanted signal that is coupled from one channel to another because of parasitic capacitance.
-3 dB Bandwidth
Frequency at which the output is attenuated by 3 dB .

On Response

Frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
Ratio of the harmonics amplitude plus noise of a signal to the fundamental.

OUTLINE DIMENSIONS

Figure 26. 10-Lead Lead Frame Chip Scale Package [LFCSP_UQ]
1.30×1.60 mm Body, Ultrathin Quad
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG854BCPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -Lead Lead Frame Chip Scale Package [LFCSP_UQ]	CP-10-10	C
ADG854BCPZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Lead Frame Chip Scale Package [LFCSP_UQ]	CP-10-10	C

[^3]NOTES
\square A06854

NOTES

ADG854

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-8MSOPEBZ TPS2061EVM-292 MAX4993EVKIT+ ISL54059EVAL1Z MAX4989EVKIT+ MAX14983EEVKIT\# MAX14589EEVKIT\# TPS2051BEVM TPS2560DRCEVM-424 TSU6721EVM BOB-09056 EKIT01-HMC1027BG TPS2561DRCEVM-424 2717 ISL54220IRUEVAL1Z TS3USB221AEVM 126968-HMC857LC5 EVAL-ADGS1212SDZ TPS22924CEVM-532 ASL1101 SIP32102EVB DC858A DC892A-B EVAL-10MSOPEBZ EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ EVAL-28TSSOPEBZ EVAL5SC70EBZ EVAL-ADG4612EBZ EVAL-ADG5243FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z EVAL-ADG5412BFEBZ EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVAL-ADG854EBZ EVAL-ADG884EBZ EVAL-ADG888EBZ EVAL-ADGS1208SDZ EVAL-ADGS1209SDZ EVAL-ADGS1409SDZ EVAL-ADGS1412SDZ EVALADGS5414SDZ DFR0576 DG1208EVKIT\# DG1209EVKIT\# MAX12005EVKIT\# MAX14575AEVKIT\#

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.

