

0.4 Ω CMOS, Dual DPDT Switch in WLCSP/LFCSP/TSSOP

Data Sheet ADG888

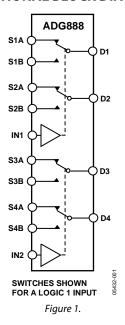
FEATURES

1.8 V to 5.5 V operation
Ultralow on resistance
0.4 Ω typical
0.6 Ω maximum at 5 V supply
Excellent audio performance, ultralow distortion
0.07 Ω typical
0.14 Ω maximum R_{ON} flatness
High current carrying capability
400 mA continuous
600 mA peak current at 5 V
Automotive temperature range: -40°C to +125°C
Rail-to-rail switching operation

APPLICATIONS

Cellular phones
PDAs
MP3 players
Power routing
Battery-powered systems
PCMCIA cards
Modems
Audio and video signal routing
Communication systems
Data switching

Typical power consumption (<0.1 μW)


GENERAL DESCRIPTION

The ADG888 is a low voltage, dual DPDT (double-pole, double-throw) CMOS device optimized for high performance audio switching. With its low power and small physical size, it is ideal for portable devices.

This device offers ultralow on resistance of less than 0.8 Ω over the full temperature range, making it an ideal solution for applications requiring minimal distortion through the switch. The ADG888 also has the capability of carrying large amounts of current, typically 400 mA at 5 V operation.

When on, each switch conducts equally well in both directions and has an input signal range that extends to the supplies. The ADG888 exhibits break-before-make switching action.

FUNCTIONAL BLOCK DIAGRAM

The ADG888 is available in a 16-ball WLCSP, 16-lead LFCSP, and a 16-lead TSSOP. These packages make the ADG888 the ideal solution for space-constrained applications.

PRODUCT HIGHLIGHTS

- 1. $<0.6 \Omega$ over full temperature range of -40° C to $+125^{\circ}$ C.
- 2. High current handling capability (400 mA continuous current at 5 V).
- 3. Low THD + N (0.008% typical).
- 4. Tiny 16-ball WLCSP, 16-lead LFCSP, and 16-lead TSSOP.

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagram1
General Description1
Product Highlights1
Revision History2
Specifications
Absolute Maximum Ratings5
REVISION HISTORY
1/2019—Rev. C to Rev. D
Changes to Table 5 and to Table 6 Headings7
Updated Outline Dimensions
3/2017—Rev. B to Rev. C
Changes to Figure 47
Changes to Figure 1910
Changes to Ordering Guide14
4/2016—Rev. A to Rev. B
Changed CB-16 to CB-16-1 and CP-16-4 to
CP-16-23Throughout
Changes to Figure 2 and Table 46
Moved Figure 47
Added Table 5; Renumbered Sequentially8
Updated Outline Dimensions
Changes to Ordering Guide 14

ESD Caution	5
Pin Configurations and Function Descriptions	6
Typical Performance Characteristics	8
Test Circuits	10
Terminology	12
Outline Dimensions	13
Ordering Guide	14

12/2006—Rev. 0 to Rev. A

Updated Format	Universal
Changes to Table 2	4
Changes to Table 3	5
Changes to Ordering Guide	

7/2005—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm DD}$ = 4.2 V to 5.5 V, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	B Version ¹	Y Version ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 \ to \ V_{\text{DD}}$	V	
On Resistance (RoN)	0.4			Ωtyp	$V_{DD} = 4.2 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_{DS} = 100 \text{ mA}$
	0.48	0.55	0.6	Ω max	See Figure 16
On Resistance Match Between	0.04			Ωtyp	$V_{DD} = 4.2 \text{ V}, V_S = 2.2 \text{ V}, I_{DS} = 100 \text{ mA}$
Channels (ΔR_{ON})					
	0.06	0.07	0.075	Ω max	
On Resistance Flatness (R _{FLAT (ON)})	0.07			Ω typ	$V_{DD} = 4.2 \text{ V}, V_S = 0 \text{ V to } V_{DD}$
	0.11	0.13	0.14	Ω max	$I_{DS} = 100 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 5.5 \text{ V}$
Source Off Leakage Is (Off)	±0.2			nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 17}$
Channel On Leakage ID, Is (On)	±0.2			nA typ	$V_S = V_D = 1 \text{ V or } 4.5 \text{ V; see Figure } 18$
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	2			pF typ	
DYNAMIC CHARACTERISTICS ²					
t _{ON}	22			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	30	33	35	ns max	$V_S = 3 \text{ V/0 V}$; see Figure 19
t _{OFF}	13			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	17	18	19	ns max	$V_S = 3 \text{ V/0 V}$; see Figure 19
Break-Before-Make Time Delay (t _{BBM})	9			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
			5	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; see Figure 20
Charge Injection	70			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 21}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 22
Channel-to-Channel Crosstalk	-99			dB typ	Adjacent channel; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 25
	-67			dB typ	Adjacent switch; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 23
Total Harmonic Distortion (THD + N)	0.008			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 3 V p-p$
Insertion Loss	-0.03			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 24
–3 dB Bandwidth	29			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 24
C _s (Off)	58			pF typ	
C _D , C _s (On)	110			pF typ	
POWER REQUIREMENTS				. /	V _{DD} = 5.5 V
lop	0.003			μA typ	Digital inputs = 0 V or 5.5 V
		1	4	μA max	

 $^{^1}$ Temperature range for the Y version is -40° C to $+125^{\circ}$ C for the TSSOP and LFCSP; temperature range for the B version is -40° C to $+85^{\circ}$ C for the WLCSP. 2 Guaranteed by design, not production tested.

 $V_{\rm DD}$ = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	B Version ¹	Y Version ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 \ to \ V_{DD}$	V	
On Resistance (RoN)	0.5			Ωtyp	$V_{DD} = 2.7 \text{ V, } V_S = 0 \text{ V to } V_{DD}$
	0.7	0.75	0.8	Ωmax	I _s = 100 mA; see Figure 16
On Resistance Match Between Channels (ΔR_{ON})	0.045			Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 1 \text{ V}$
	0.072	0.077	0.083	Ωmax	I _S = 100 mA
On Resistance Flatness (R _{FLAT (ON)})	0.16			Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}$
			0.262	Ωmax	I _S = 100 mA
LEAKAGE CURRENTS					$V_{DD} = 3.6 \text{ V}$
Source Off Leakage Is (Off)	±0.2			nA typ	$V_S = 1 \text{ V}/2.6 \text{ V}, V_D = 2.6 \text{ V}/1 \text{ V}; \text{ see Figure 17}$
Channel On Leakage I _D , I _S (On)	±0.2			nA typ	$V_S = V_D = 1 \text{ V or } 2.6 \text{ V}$; see Figure 18
DIGITAL INPUTS				7.	
Input High Voltage, V _{INH}			1.3	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
l _{INL} or l _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μΑ	
				max	
C _{IN} , Digital Input Capacitance	2			pF typ	
DYNAMIC CHARACTERISTICS ²					
t _{ON}	28			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$; see Figure 19
	43	47	50	ns max	$V_S = 1.5 \text{ V/O V}$
t _{OFF}	13			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$; see Figure 19
	20	21	22	ns max	$V_S = 1.5 \text{ V/O V}$
Break-Before-Make Time Delay (t _{BBM})	14			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
·			5	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$; see Figure 20
Charge Injection	50			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 21}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 22
Channel-to-Channel Crosstalk	-99			dB typ	Adjacent channel; $R_L = 50 \text{ V}$, $C_L = 5 \text{ pF}$, $f = 100 \text{ kHz}$; see Figure 25
	-67			dB typ	Adjacent switch; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 23
Total Harmonic Distortion (THD + N)	0.01			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 1 V p-p$
Insertion Loss	-0.04			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 24
-3 dB Bandwidth	29			MHz	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 24
				typ	
C _s (Off)	60			pF typ	
C_D , C_S (On)	115			pF typ	
POWER REQUIREMENTS					$V_{DD} = 3.6 \text{ V}$
I _{DD}	0.003			μA typ	Digital inputs = 0 V or 3.6 V
		1	2	μΑ	
				max	

 $^{^{1}\}text{Temperature range for the Y version is } -40^{\circ}\text{C to } +125^{\circ}\text{C for the TSSOP and LFCSP}; temperature range for the B version is } -40^{\circ}\text{C to } +85^{\circ}\text{C for the WLCSP}.$ $^{2}\text{Guaranteed by design, not production tested.}$

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3

Table 3.	
Parameter	Rating
V _{DD} to GND	−0.3 V to +6 V
Analog Inputs, Digital Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or } 30 \text{ mA},$ whichever occurs first
Peak Current, S or D	
5 V operation	600 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	
5 V operation	400 mA
Operating Temperature Range	
Automotive (Y Version)	
TSSOP and LFCSP	−40°C to +125°C
Industrial (B version)	
WLCSP	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance	
16-Lead TSSOP	
θ_{JA} (4-Layer Board)	112°C/W
Θ_{JC}	27.6°C/W
16-Lead WLCSP	
θ_{JA} (4-Layer Board)	130°C/W
16-Lead LFCSP	
θ_{JA} (4-Layer Board)	30.4°C/W
Reflow Soldering (RoHS Compliant)	
Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	10 sec to 40 sec
	<u> </u>

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

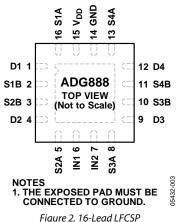


Figure 2. 16-Lead LFCSP Pin Configuration

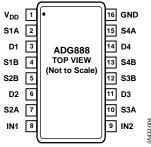


Figure 3. 16-Lead TSSOP Pin Configuration

Table 4. LFCSP and TSSOP Pin Function Descriptions

Pin No.			
LFCSP	TSSOP	Mnemonic	Description
1	3	D1	Drain Terminal 1. Can be an input or output.
2	4	S1B	Source Terminal 1B. Can be an input or output.
3	5	S2B	Source Terminal 2B. Can be an input or output.
4	6	D2	Drain Terminal 2. Can be an input or output.
5	7	S2A	Source Terminal 2A. Can be an input or output.
6	8	IN1	Logic Control Input.
7	9	IN2	Logic Control Input.
8	10	S3A	Source Terminal 3A. Can be an input or output.
9	11	D3	Drain Terminal 3. Can be an input or output.
10	12	S3B	Source Terminal 3B. Can be an input or output.
11	13	S4B	Source Terminal 4B. Can be an input or output.
12	14	D4	Drain Terminal 4. Can be an input or output.
13	15	S4A	Source Terminal 4A. Can be an input or output.
14	16	GND	Ground (0 V) Reference.
15	1	V_{DD}	Most Positive Power Supply Potential.
16	2	S1A	Source Terminal 1A. Can be an input or output.
0	Not applicable	EP	Exposed Pad. The exposed pad must be connected to ground.

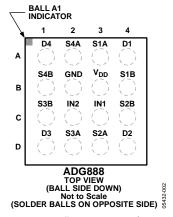


Figure 4. 16-Ball WLCSP Pin Configuration

Table 5. WLCSP Pin Function Descriptions

WLCSP Pin No.	Mnemonic	Description
1A	D4	Drain Terminal 4. Can be an input or output.
2A	S4A	Source Terminal 4A. Can be an input or output.
3A	S1A	Source Terminal 1A. Can be an input or output.
4A	D1	Drain Terminal 1. Can be an input or output.
1B	S4B	Source Terminal 4B. Can be an input or output.
2B	GND	Ground (0 V) Reference.
3B	V_{DD}	Most Positive Power Supply Potential.
4B	S1B	Source Terminal 1B. Can be an input or output.
1C	S3B	Source Terminal 3B. Can be an input or output.
2C	IN2	Logic Control Input.
3C	IN1	Logic Control Input.
4C	S2B	Source Terminal 2B. Can be an input or output.
1D	D3	Drain Terminal 3. Can be an input or output.
2D	S3A	Source Terminal 3A. Can be an input or output.
3D	S2A	Source Terminal 2A. Can be an input or output.
4D	D2	Drain Terminal 2. Can be an input or output.

Table 6. Truth Table

Logic (IN1/IN2)	Switch S1A/S2A/S3A/S4A	Switch S1B/S2B/S3B/S4B
0	Off	On
_ 1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

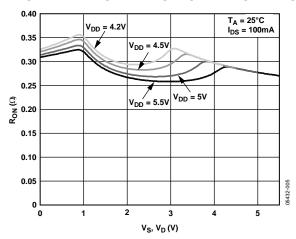


Figure 5. On Resistance vs. V_D (V_S), $V_{DD} = 4.2 \text{ V}$ to 5.5 V

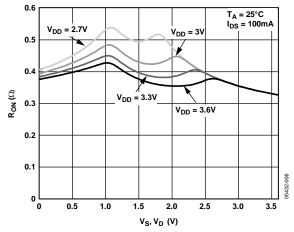


Figure 6. On Resistance vs. V_D (V_S), $V_{DD} = 2.7 \text{ V}$ to 3.6 V

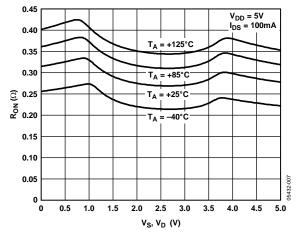


Figure 7. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 5 V$

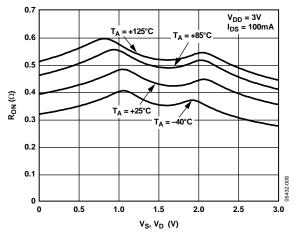


Figure 8. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 3 V$

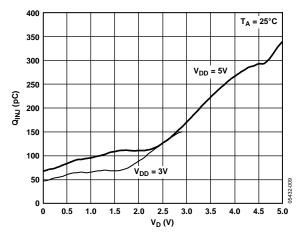


Figure 9. Charge Injection vs. Source Voltage

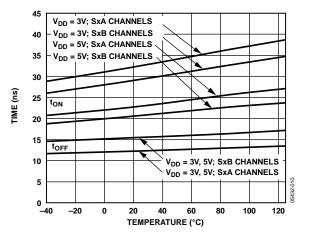


Figure 10. ton/toff Times vs. Temperature

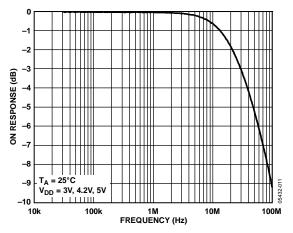


Figure 11. Bandwidth

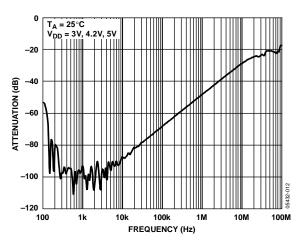


Figure 12. Off Isolation vs. Frequency

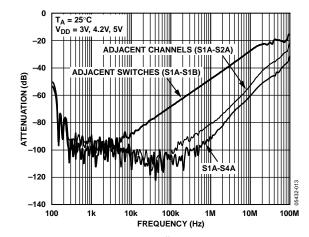


Figure 13. Crosstalk vs. Frequency

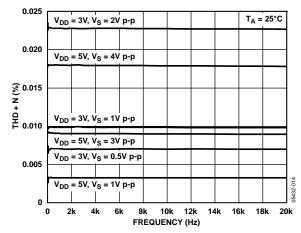


Figure 14. Total Harmonic Distortion + Noise (THD + N)

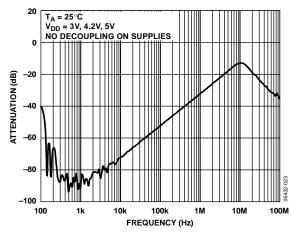


Figure 15. AC PSRR

TEST CIRCUITS

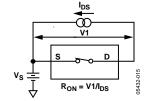


Figure 16. On Resistance

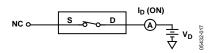


Figure 18. On Leakage

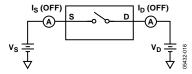


Figure 17. Off Leakage

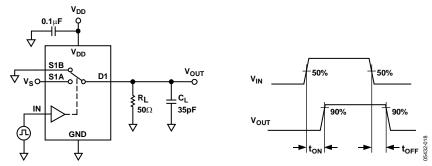


Figure 19. Switching Times, ton, toff

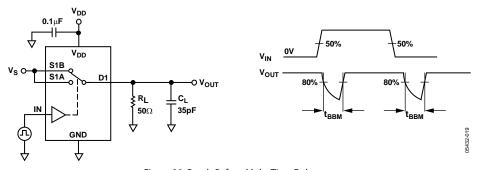


Figure 20. Break-Before-Make Time Delay, t_{BBM}

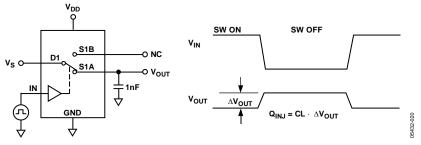


Figure 21. Charge Injection

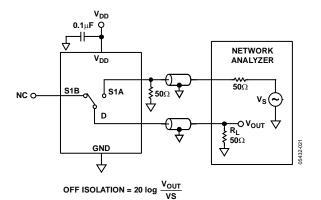


Figure 22. Off Isolation

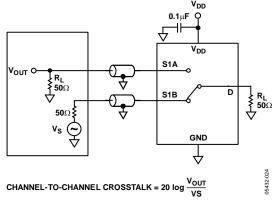
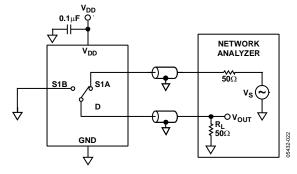



Figure 23. Channel-to-Channel Crosstalk (S1A to S1B)

 $\label{eq:vout_with_switch} \text{INSERTION LOSS} = 20 \ \text{log} \ \frac{\text{V}_{\text{OUT}} \ \text{WITH SWITCH}}{\text{V}_{\text{OUT}} \ \text{WITHOUT SWITCH}}$

Figure 24. Bandwidth

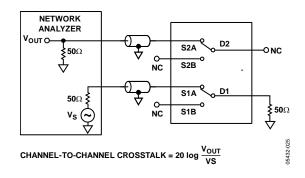


Figure 25. Channel-to-Channel Crosstalk (S1A to S2A)

TERMINOLOGY

Inn

Positive supply current.

 $V_D(V_S)$

Analog voltage on Terminal D and Terminal S.

RON

Ohmic resistance between Terminal D and Terminal S.

R_{FLAT (ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

 ΔR_{ON}

On resistance match between any two channels.

Is (OFF)

Source leakage current with the switch off.

ID, Is (ON)

Channel leakage current with the switch on.

 V_{INL}

Maximum input voltage for Logic 0.

 V_{INH}

Minimum input voltage for Logic 1.

IINL (IINH)

Input current of the digital input.

C_s (OFF)

Off switch source capacitance. Measured with reference to ground.

C_D, C_s (ON)

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

ton

Delay time between the 50% and the 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and the 90% points of the digital input and switch off condition.

tBBM

On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. This is specified for two conditions:

- Adjacent channel, that is, S1A to S2A, S1B to S2B, S3A to S4A, or S3B to S4B.
- Adjacent switch, that is, S1A to S1B, S2A to S2B, S3A to S3B, or S4A to S4B.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitudes plus signal noise to the fundamental.

OUTLINE DIMENSIONS

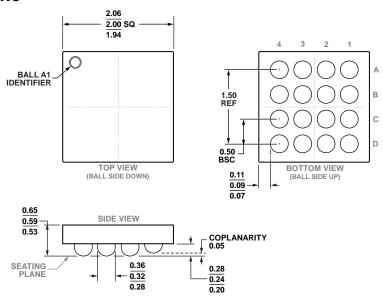


Figure 26. 16-Ball Wafer Level Chip Scale Package [WLCSP] (CB-16-1) Dimensions shown in millimeters

5.10 5.00 4.90 4.50 4.40 4.30 PIN 1 1 8 8 6.40 BSC MAX 0.15 0.65 0.60 0.19 0.75 0.60 0.45 0.60 0.45 0.10 0.10

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 27. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

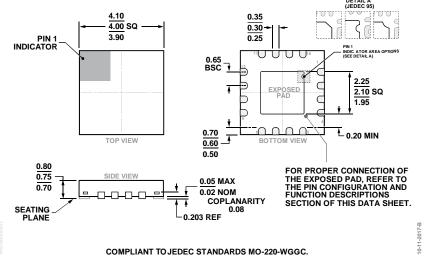


Figure 28. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23) Dimensions shown in millimeters

ORDERING GUIDE

	ONDENING GOIDE				
Model ¹ Temperature Range			Package Description	Package Option	Marking Code ²
	ADG888YRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
	ADG888YRUZ-REEL	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
	ADG888YRUZ-REEL7	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
	ADG888YCPZ-REEL7	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23	SOD
	ADG888BCBZ-REEL7	−40°C to +85°C	16-Ball Wafer Level Chip Scale Package [WLCSP]	CB-16-1	S02
	EVAL-ADG888EBZ		Evaluation Board		

¹ Z = RoHS Compliant Part.

 $^{^{\}rm 2}$ Branding on these packages is limited to three characters due to space constraints.

NOTES

NOTES

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switch IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

EVAL-8MSOPEBZ TPS2061EVM-292 MAX4993EVKIT+ ISL54059EVAL1Z MAX4989EVKIT+ MAX14983EEVKIT#

MAX14589EEVKIT# TPS2051BEVM TPS2560DRCEVM-424 TSU6721EVM BOB-09056 EKIT01-HMC1027BG TPS2561DRCEVM-424

2717 ISL54220IRUEVAL1Z TS3USB221AEVM 126968-HMC857LC5 EVAL-ADGS1212SDZ TPS22924CEVM-532 ASL1101

SIP32102EVB DC858A DC892A-B EVAL-10MSOPEBZ EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ EVAL-28TSSOPEBZ EVAL-5SC70EBZ EVAL-ADG54612EBZ EVAL-ADG5243FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z EVAL-ADG5412BFEBZ

EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVAL-ADG854EBZ EVAL-ADG884EBZ

EVAL-ADG888EBZ EVAL-ADGS1208SDZ EVAL-ADGS1209SDZ EVAL-ADGS1409SDZ EVAL-ADGS1412SDZ EVAL-ADGS1412SDZ EVAL-ADGS5414SDZ DFR0576 DG1208EVKIT# DG1209EVKIT# MAX12005EVKIT# MAX14575AEVKIT#