Evaluation Board for the ADG901/ADG902 and ADG918/ADG919 Wideband Absorptive/Reflective Switches

FEATURES

Evaluation board for the ADG901/ADG902 SPST and the ADG918/ADG919 SPDT switches
RF through for board calibration

GENERAL DESCRIPTION

This user guide describes the evaluation board for the ADG901/ADG902 and ADG918/ADG919 switches.

The ADG901/ADG902 (SPST) and the ADG918/ADG919 (SPDT) are wideband switches using a CMOS process to provide high isolation and low insertion loss to 1 GHz .
Full data on the ADG901/ADG902 and the ADG918/ADG919 is available in their respective data sheets available from Analog Devices and should be consulted in conjunction with this user guide when using the evaluation board.

TYPICAL SETUP

Figure 1. ADG901/ADG902/ADG918/ADG919 Evaluation Board

UG-676

OPERATING THE ADG901/ADG902 AND THE ADG918/ADG919 EVALUATION BOARD

This evaluation board allows designers to evaluate the highperformance SPST and SPDT wideband switches with a minimum of effort.
To prove that these devices meet the user's requirements, use a power supply and a network analyzer.

POWER SUPPLIES

This evaluation board has two analog power supply inputs: $V_{D D}$ and CTRL. VDD can equal 1.65 V to 2.75 V .
The CTRL inputs are both CMOS and LVTTL compatible. For operation of the ADG901/ADG902 evaluation board, see Table 1 for setup conditions. For operation of the ADG918/ ADG919 evaluation board, see Table 2 for setup conditions.

Table 1. Truth Table ADG901/ADG902

CTRL	Signal Path
0	RF1 isolated from RF2
1	RF1 to RF2

Table 2. Truth Table ADG918/ADG919

CTRL	Signal Path
0	RF2 to RFC
1	RF1 to RFC

ADG901/ADG902

The RF1 port, see Figure 2, is connected through a 50Ω transmission line to the top left SMA connector, J1. RF2 is connected through 50Ω transmission lines to the top SMA connector, J2. The port labeled RF2 is ground; connect to ground when evaluating ADG901/ADG902. A through transmission line connects J4 and J5 and this transmission line is used to estimate the loss of the PCB over the environmental conditions being evaluated.

ADG918/ADG919

The RFC port, see Figure 3, is connected through a 50Ω transmission line to the top left SMA connector, J1. RF1 and RF2 are connected through 50Ω transmission lines to the top two SMA connectors, J2 and J3, respectively. A through transmission line connects J4 and J5 and this transmission line is used to estimate the loss of the PCB over the environmental conditions being evaluated.
The board is constructed of a four layer, FR4 material with a dielectric constant of approximately 4.3. The total board thickness is $0.062^{\prime \prime}$. Two ground layers with grounded planes provide ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide with the ground plane model using a trace width of $0.052^{\prime \prime}$, clearance to the ground plane of $0.030^{\prime \prime}$, dielectric thickness of $0.029^{\prime \prime}$ and a metal thickness of 0.0014 ".

A $10 \mu \mathrm{~F}$ surface-mount tantalum decoupling capacitor is provided on the V_{DD} line and two 10 pF ceramic capacitors are placed close to the DUT on both the V_{DD} pin and the CTRL pin. Unpopulated component positions are available for the user to apply extra components to meet their design application.

Figure 3. ADG918/ADG919 Top View

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 5. ADG901/ADG902/ADG918/ADG919 Silkscreen

ORDERING INFORMATION

BILL OF MATERIALS

Table 3.

Item	Qty	Reference	Description	Supplier/No.
1	1	U1	ADG901/ADG902/ADG918/ADG919	Analog Devices, Inc.
2	7	J1 to J7	SMA end launch connectors 0.062"	J502-ND
3	2	C1, C2	10 pF ceramic capacitor	FEC 499-110
4	1	C4	10μ F tantalum capacitor	FEC 643-683

REVISION HISTORY

4/14—Rev. A to Rev. B
\qquadChanges to ADG918/ADG919 Section 3

2003-Rev. A

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

 submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1

