$0 \mathrm{~Hz} / \mathrm{dc}$ to 14 GHz , Single-Pole, Four-Throw MEMS Switch with Integrated Driver

Data Sheet

FEATURES

Fully operational down to $0 \mathrm{~Hz} / \mathrm{dc}$
On resistance: 2.9Ω (maximum)
Off leakage: 0.5 nA (maximum)
-3 dB bandwidth
11 GHz (typical) for RF1, RF4
14 GHz (typical) for RF2, RF3
RF performance characteristics
Insertion loss: 0.26 dB (typical) at $\mathbf{2 . 5} \mathbf{~ G H z}$
Isolation: $\mathbf{2 4 ~ d B ~ (t y p i c a l) ~ a t ~} 2.5 \mathbf{~ G H z}$
IIP3: 69 dBm (typical)
RF power: $\mathbf{3 6 ~ d B m}$ (maximum)
Actuation lifetime: 1 billion cycles (minimum)
Hermetically sealed switch contacts
On switching time: $\mathbf{7 5} \mu \mathrm{s}$ (maximum)
Integrated driver removes the need for an external driver
Supply voltage: 3.0 V to 3.6 V
CMOS/LVTTL compatible
Parallel and SPI interface
Independently controllable switches
Switch is in an open state with no power supply present
Requirement to avoid floating nodes on all RFx pins (see the Floating Node section)
24-lead, $5 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.95 \mathrm{~mm}$, LFCSP
Operating temperature range: $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

Relay replacements

Automatic test equipment: RF/high speed digital and mixed signals
Load and probe boards: RF/high speed digital and mixed signals
RF test instrumentation
Reconfigurable filters and attenuators
High performance RF switching

GENERAL DESCRIPTION

The ADGM1304 is a wideband, single-pole, four-throw (SP4T) switch, fabricated using Analog Devices, Inc., microelectromechanical system (MEMS) switch technology. This technology enables a small form factor, wide RF bandwidth, highly linear, low insertion loss switch that is operational from $0 \mathrm{~Hz} / \mathrm{dc}$ to 14 GHz , making the ADGM1304 an ideal solution for a wide range of RF and precision equipment switching needs.
An integrated driver chip generates a high voltage to electrostatically actuate a switch that can be controlled by a parallel interface and a serial peripheral interface (SPI). All four switches are independently controllable.

The device is packaged in a 24-lead, $5 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.95 \mathrm{~mm}$, lead frame chip-scale package (LFCSP).
To ensure optimum operation of the ADGM1304, the Critical Operational Requirements section must be followed exactly.
The on resistance (Ron) performance of the ADGM1304 is affected by device to device variation, channel to channel variation, cycle actuations, settling time post turn on, bias voltage, and temperature changes.

COMPANION PRODUCTS

Quad Parametric Measurement Unit (PMU): AD5522
SP4T MEMS Switch: ADGM1004
Low Noise, LDO Regulators: ADP7142, LT1962, LT3045-1
Additional companion products on the ADGM1304 product page

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Companion Products 1
Revision History 2
Functional Block Diagram 4
Specifications 5
Timing Characteristics 7
Absolute Maximum Ratings 9
Thermal Resistance 9
ESD Caution 9
Pin Configuration and Function Descriptions 10
Typical Performance Characteristics 12
Eye Diagrams 17
Test Circuits 18
Terminology 21
Theory of Operation 23
Parallel Digital Interface 23
SPI Digital Interface 24
Internal Oscillator Feedthrough 26
Internal Oscillator Feedthrough Mitigation. 26
REVISION HISTORY
2/2021—Rev. F to Rev. G
Changes to Features Section 1
Added Companion Products Section 1
Changes to Note 3, Table 1 6
Added Note 4, Table 1; Renumbered Sequentially 6
Deleted Figure 6; Renumbered Sequentially 12
Changes to Figure 38 and Figure 39 18
Changes to Figure 42 19
Changes to Figure 44, Figure 45, and Figure 46 20
Changes to Table 6 23
Changes to Addressable Mode Section and Figure 49 Caption 24
Added Figure 50; Renumbered Sequentially 24
Moved Daisy-Chain Mode Section 25
Changes to Typical Operating Circuit Section. 26
Added Power Supply Rails Section, Power Supply
Recommendations Section, Figure 55, and Table 7; Renumbered Sequentially 28
Changes to System Error Considerations Due to On-Resistance
Drift Section 30
Added On-Resistance Shift Due to Temperature Shock PostActuations Section, Figure 59, Hot Switching Section, andFigure 6030
Low Power Mode 26
Typical Operating Circuit 26
Applications Information 28
Power Supply Rails 28
Power Supply Recommendations 28
Switchable RF Attenuator 28
Reconfigurable RF Filter 28
Critical Operational Requirements. 30
System Error Considerations Due to On-Resistance Drift 30
On-Resistance Shift Due to Temperature Shock Post Actuations 30
Hot Switching 30
Floating Node 31
Cumulative On Switch Lifetime. 32
Handling Precautions 32
Register Summary and Details 33
Switch Data Register 33
Outline Dimensions 34
Ordering Guide 34
Added Figure 61 31
Deleted Table 8; Renumbered Sequentially. 31
Changes to Mechanical Shock Precautions Section 32
1/2020—Rev. E to Rev. F
Changes to Figure 14
1/2020—Rev. D to Rev. EReorganized LayoutUniversal
Changes to Features Section and General Description SectionChanges to Table 1 5
Added Timing Characteristics and Table 2; Renumbered Sequentially 7
Added Figure 2 to Figure 4; Renumbered Sequentially 8
Changes to Table 3 9
Changes to Figure 5 and Table 5 10
Deleted Figure 7 and Figure 9; Renumbered Sequentially 12
Added Figure 6 to Figure 11 12
Deleted Figure 14 and Figure 17 13
Added Figure 12 to Figure 14. 13
Added Figure 19 14
Added Figure 26 to Figure 29. 15
Added Figure 30 to Figure 32 16
Deleted Figure 33 and Figure 36 17
Changes to Figure 40 18
Deleted Figure 43 and Figure 45 19
Added Figure 43 19
Added Figure 46 and Figure 47 20
Changes to Terminology Section 21
Deleted Sleep Mode (SLEEP) Section 23
Changes to Parallel Digital Interface Section 23
Deleted Driver IC Oscillator Section 24
Added SPI Digital Interface Section, Addressable Mode Section, and Daisy-Chain Mode Section 24
Changes to Table 6 24
Added Figure 50 to Figure 53, Hardware Reset Section, and
Internal Error Reset Status Section 25
Deleted External Clock (EXTCLK) Section 26
Added Internal Oscillator Feedthrough Section, Internal Oscillator Feedthrough Mitigation Section, and Low PowerMode Section26
Changes to Typical Operating Circuit Section 26
Changes to Figure 54 27
Deleted Floating Node Avoidance Section 28
Deleted Suggested Application Circuits Section Heading 29
Added Critical Operational Requirements Section, System Error Considerations Due to On-Resistance Drift Section, Table 7, and Floating Node Section 29
Deleted ESD Precautions Section and Voltage Standoff LimitSection30
Changes to Figure 63, Figure 64, Cumulative On Switch Lifetime Section, and Electrical Overstress (EOS) PrecautionsSection30
Changes to Mechanical Shock Precautions Section and Figure 67 31
Added Register Summary and Details Section, Table 9, Switch Data Register Section, and Table 10 32
Changes to Ordering Guide 33
3/2018—Rev. C to Rev. D
Changes to Features Section. 1
Changes to On Resistance Parameter and On Leakage Parameter, Table 13
Added Endnote 6, Table 1; Renumbered Sequentially 4
Changes to Figure 11 and Figure 14 8
Added Eye Diagrams Section and Figure 17 to Figure 22;
Renumbered Sequentially 10
Added Figure 30, Figure 31, and Figure 32 12
Changes to Floating Node Avoidance Section, Figure 36, and Figure 40 18
Changes to Ordering Guide
Changes to Ordering Guide 22 22

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6, \mathrm{AGND}=0 \mathrm{~V}$, RFGND $=0 \mathrm{~V}$, all specifications minimum temperature $\left(\mathrm{T}_{\mathrm{MIN}}\right)$ to maximum temperature $\left(\mathrm{T}_{\mathrm{MAX}}\right)=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.

Table 1.

ADGM1304

Parameter	Symbol	Min	Typ ${ }^{1}$	Max	Unit	Test Conditions/Comments ${ }^{2}$
Power-Up Time Video Feedthrough Internal Oscillator Frequency Internal Oscillator Feedthrough ${ }^{9}$		8	$\begin{aligned} & 0.75 \\ & 16 \\ & 10 \\ & -123 \\ & \\ & -146 \end{aligned}$	12	ms mV peak MHz dBm $\mathrm{dBm} / \mathrm{Hz}$	Charge pump capacitor ($C_{C P}$) $=47 \mathrm{pF}$, 95% VDD to 90% RFx $1 \mathrm{M} \Omega$ load at RFx pin Spectrum analyzer resolution bandwidth (RBW) $=200 \mathrm{~Hz}$; one switch in on state, all other switches off with 50Ω terminations ${ }^{10}$
CAPACITANCE PROPERTIES On Switch Channel Capacitance Off Switch Channel Capacitance	CRFon $C_{\text {RF off }}$		$\begin{aligned} & 3.3 \\ & 1.6 \end{aligned}$		pF pF	At 1 MHz , includes LFCSP package capacitance
LEAKAGE PROPERTIES On Leakage Off Leakage				$\begin{aligned} & 5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	$\begin{aligned} & \mathrm{RFx} \text { (off channels) }=-6 \mathrm{~V}, \mathrm{RFC} \text { to } \mathrm{RFx} \text { (on channel) }=-6 \mathrm{~V} \\ & \mathrm{RFx}=6 \mathrm{~V}, \mathrm{RFC}=-6 \mathrm{~V} \end{aligned}$
DIGITAL INPUTS Input High Voltage Input Low Voltage Input Current	$\mathrm{V}_{\text {INH }}$ VINL linı/linh	2	0.025	$\begin{aligned} & 0.8 \\ & 1 \end{aligned}$	V V $\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DIGITAL OUTPUTS Output High Voltage Output Low Voltage	V VoL	$V_{D D}-0.4 V$		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	Source current $($ Isource $)=1 \mathrm{~mA}$ Sink current $\left(\mathrm{I}_{\mathrm{sink}}\right)=1 \mathrm{~mA}$
POWER REQUIREMENTS Supply Voltage Supply Current Low Power Mode Current ${ }^{11}$ External Drive Voltage ${ }^{12}$ External Drive Current	$V_{D D}$ IDD IDD EXT VCP VCP ${ }_{\text {Ext }}$ $\mathrm{I}_{\text {CP EXTVCP }}$	3.0 79.2	80	$\begin{aligned} & 3.6 \\ & 2.5 \\ & \\ & 50 \\ & \\ & 80.8 \\ & 20 \end{aligned}$	V mA $\mu \mathrm{A}$ V $\mu \mathrm{A}$	Digital inputs $=0 \mathrm{~V}$ or V_{DD}, serial data out (SDO) is floating in SPI mode This value is I_{DD} in low power mode

${ }^{1}$ Typical specifications tested at $25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$.
${ }^{2}$ RFx is RF1, RF2, RF3, and RF4. INx is IN1, IN2, IN3, and IN4.
${ }^{3}$ Typically, the on resistance over time drifts by -0.05Ω per decade.
${ }^{4}$ Maximum Ron over time is Ron $(\max)+\Delta$ Ron time $(\max)=2.65 \Omega$.
${ }^{5}$ Maximum Ron after 1 billion actuations is Ron $(\max)+\Delta \operatorname{RoN}(\max)=7.9 \Omega$.
${ }^{6}$ Actuating the switch at $85^{\circ} \mathrm{C}$ and measuring Ron at $25^{\circ} \mathrm{C}$ is the most severe condition for ADGM1304 Ron drift over actuations.
${ }^{7}$ Failure occurs when 50% of a sample lot fails. For more details, see the Cumulative On Switch Lifetime section.
${ }^{8}$ Switch is settled after $75 \mu \mathrm{~s}$. Do not apply RF power between $0 \mu \mathrm{~s}$ to $75 \mu \mathrm{~s}$.
${ }^{9}$ Disable the internal oscillator to eliminate feedthrough. When the internal oscillator and charge pump circuitry are disabled, the $V_{C P}$ pin (Pin 24) must be driven with $80 \mathrm{~V} \mathrm{dc}\left(\mathrm{VCP}_{\text {ExT }}\right)$ from an external voltage supply, as outlined in Table 5, required for MEMS switch actuation.
${ }^{10}$ The spectrum analyzer setup is as follows: RBW $=200 \mathrm{~Hz}$, video bandwidth (VBW) $=2 \mathrm{~Hz}$, span $=100 \mathrm{kHz}$, input attenuator $=0 \mathrm{~dB}$, the detector type is peak, and the
maximum hold is off. The fundamental feedthrough noise or harmonic thereof (whichever is higher) is tested.
${ }^{11}$ For more details, see the Low Power Mode section.
${ }^{12}$ For more details, see the Internal Oscillator Feedthrough Mitigation section.

TIMING CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{AGND}=0 \mathrm{~V}$, RFGND $=0 \mathrm{~V}$, all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Limit at $\mathrm{T}_{\text {min, }}$, $\mathrm{Tmax}^{\text {m }}$	Unit	Conditions/Comments
t_{1}	100	ns min	Serial clock (SCLK) period
t_{2}	45	$n \mathrm{nmin}$	SCLK high pulse width
t_{3}	45	$n \mathrm{mmin}$	SCLK low pulse width
t_{4}	25	$n \mathrm{nsmin}$	Chip select ($\overline{\mathrm{CS}}$) falling edge to SCLK active edge
t_{5}	20	$n \mathrm{nmin}$	Data setup time
t_{6}	20	$n \mathrm{nmin}$	Data hold time
t_{7}	25	$n \mathrm{nmin}$	SCLK active edge to $\overline{C S}$ rising edge
t_{8}	20	ns max	$\overline{\text { CS }}$ falling edge to SDO data available
$\mathrm{t}_{9}{ }^{1}$	40	ns max	SCLK falling edge to SDO data available
t_{10}	25	ns max	$\overline{C S}$ rising edge to SDO returns to high impedance
t_{11}	100	ns min	$\overline{\mathrm{CS}}$ high time between SPI commands
t_{12}	25	ns min	SCLK edge rejection to chip select ($\overline{\mathrm{CS}}$) falling edge
t_{13}	25	ns min	$\overline{\mathrm{CS}}$ rising edge to SCLK edge rejection

${ }^{1}$ Measured with a 20 pF load. t9 determines the maximum SCLK frequency when SDO is used.

Figure 2. Addressable Mode Timing Diagram

Figure 3. Daisy Chain Timing Diagram

Figure 4. SCLK and $\overline{C S}$ Timing Relationship

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
VDD to AGND	-0.3 V to +6 V
Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA (whichever occurs first)
DC Voltage Rating ${ }^{2}$	$\pm 7 \mathrm{~V}$
VCP ${ }_{\text {Ext }}$	82 V
Current Rating ${ }^{2}$	250 mA
RF Power Rating	37 dBm
Standoff Voltage ${ }^{3}$	
RFx to AGND	$\pm 10 \mathrm{~V}$
RFC to AGND	$\pm 10 \mathrm{~V}$
RFx to RFC	20 V
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow Soldering (Pb-Free)	
Peak Temperature	260(+0/-5) ${ }^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 30 sec
Electrostatic Discharge (ESD)	
Human Body Model (HBM) ${ }^{4}$	
RF1, RF2, RF3, RF4 and RFC	100 V
All Other Pins	2.5 kV
Field-Induced ChargedDevice Model (FICDM) ${ }^{5}$	
All Pins	500 V
Group D	
Mechanical Shock ${ }^{6}$	1500 g with 0.5 ms pulse
Vibration	20 Hz to 2000 Hz acceleration at 50 g
Constant Acceleration	30,000 g

${ }^{1}$ Clamp overvoltages at INx pin by internal diodes. Limit the current to the maximum ratings given.
${ }^{2}$ This rating is with respect to the switch in the on position with no RF signal applied.
${ }^{3}$ This rating is with respect to the switch in the off position.
${ }^{4}$ Take proper precautions during handling, as detailed in the Handling Precautions section.
${ }^{5}$ A safe automated handling and assembly process is achieved at this rating level by implementing industry-standard ESD controls.
${ }^{6}$ If the device is dropped during handling, do not use the device.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JA} is the junction to ambient thermal resistance.
$\theta_{\text {IC }}$ is the junction to case thermal resistance.
Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{Jc}}$	Unit
$\mathrm{CP}-24-9^{1}$	49.1	11.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ See JEDEC standard JESD51-2 for additional information on optimizing the thermal impedance (PCB with 3×3 vias).

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. EXPOSED PAD 1. EP1 IS INTERNALLY CONNECTED TO AGND.

IT IS RECOMMENDED TO CONNECT TO BOTH AGND AND REFGND. 2. EXPOSED PAD 2. EP2 IS INTERNALLY CONNECTED TO RFGND. IT IS RECOMMENDED TO CONNECT TO BOTH REFGND AND AGND.

Figure 5. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1/SDI	Parallel Logic Digital Control Input 1. The voltage applied to this pin controls the gate of the RF1 to RFC MEMS switch. In parallel mode, if the IN1 pin is low, the RF1 to RFC switch is open (off). If the IN1 pin is high, the RF1 to RFC switch is closed (on). In SPI mode, this pin is the serial data input (SDI) pin.
2	IN2/CS	Parallel Logic Digital Control Input 2. The voltage applied to this pin controls the gate of the RF2 to RFC MEMS switch. In parallel mode, if IN2 is low, the RF2 to RFC switch is open (off). If IN2 is high, the RF2 to RFC switch is closed (on). In SPI mode, this pin is the chip select ($\overline{C S}$) pin. $\overline{C S}$ is an active low signal that selects the slave device with which the master device intends to communicate. Typically, there is a dedicated $\overline{\mathrm{CS}}$ between the master device and each slave device. The $\overline{C S}$ pin also functions to synchronize and frame the communications to and from the slave device.
3	IN3/SCLK	Parallel Logic Digital Control Input 3. The voltage applied to this pin controls the gate of the RF3 to RFC MEMS switch. In parallel mode, if IN3 is low, the RF3 to RFC switch is open (off). If IN3 is high, the RF3 to RFC switch is closed (on). In SPI mode, this pin is the serial clock (SCLK) pin that synchronizes the slave device(s) to the master device. Typically, the SCLK signal is shared for all slave devices on the serial bus. The SCLK signal is always driven by the master device.
4	IN4/SDO	Parallel Logic Digital Control Input 4. The voltage applied to this pin controls the gate of the RF4 to RFC MEMS switch. In parallel mode, if IN4 is low, the RF4 to RFC switch is open (off). If IN4 is high, the RF4 to RFC switch is closed (on). In SPI mode, this pin is the serial data output (SDO) pin. Typically, the SDO pin is shared for all slave devices on the serial bus. The SDO pin is driven by only one slave device at a time, otherwise it is high impedance. The SDO pin is always high impedance when $\overline{\mathrm{CS}}$ is deasserted high.
5, 8, 22	AGND	Analog Ground Connection.
6	$\overline{\mathrm{PIN}} / \mathrm{SPI}$	Parallel Mode Enable/SPI Mode Enable. The SPI interface is enabled when this pin is high, and the parallel interface (IN1, IN2, IN3, IN4) is enabled when this pin is low.
7	EXTD_EN	External Voltage Drive Enable. In normal operation, set EXTD_EN low to enable the built in 10 MHz oscillator, which enables the internal driver IC voltage boost circuitry. Setting EXTD_EN high disables the internal 10 MHz oscillator and driver boost circuitry. With the oscillator disabled, the switch can still be controlled via the logic interface pins (IN1 to IN4) or via the SPI interface, but the $\mathrm{V}_{\text {CP }}$ pin must be driven with 80 V dc from an external voltage supply. In this mode, the ADGM1304 only consumes $50 \mu \mathrm{~A}$ maximum supply current. Disabling the internal oscillator eliminates the associated 10 MHz noise feedthrough from the switch.
$\begin{gathered} 9,11,13,14,16 \\ 17,19,21 \end{gathered}$	RFGND	RF Ground Connection.
10	RF4	RF4 Port. This pin can be an input or an output. If unused, the pin must be connected to RFGND or terminate the pin with a 50Ω resistor to RFGND.
12	RF3	RF3 Port. This pin can be an input or an output. If unused, the pin must be connected to RFGND or terminate the pin with a 50Ω resistor to RFGND.
15	RFC	Common RF Port. This pin can be an input or an output.
18	RF2	RF2 Port. This pin can be an input or an output. If unused, the pin must be connected to RFGND or terminate the pin with a 50Ω resistor to RFGND.

Pin No.	Mnemonic	Description
20	RF1	RF1 Port. This pin can be an input or an output. If unused, the pin must be connected to RFGND or terminate the pin with a 50Ω resistor to RFGND.
23	$V_{D D}$	Positive Power Supply Input. The recommended decoupling capacitor to ground value is $0.1 \mu \mathrm{~F}$. For the recommended input voltage for this chip, see the Specifications section.
24	$V_{\text {CP }}$	Charge Pump Capacitor Terminal. The recommended shunt capacitor to ground value is 47 pF (100 V rated). If EXTD_EN is high, an 80 V dc drive voltage must be input into V_{CP} to drive the switches.
	EP1	Exposed Pad 1. EP1 is internally connected to AGND. It is recommended to connect to both AGND and RFGND.
	EP2	Exposed Pad 2. EP2 is internally connected to RFGND. It is recommended to connect to both RFGND and AGND.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Absolute Ron vs. Switch Actuation Number, Switch Actuated at $25^{\circ} \mathrm{C}$ and Ron Measured at $25^{\circ} \mathrm{C}$

Figure 7. Ron Drift vs. Switch Actuation Number, Normalized at Zero, Switch Actuated at $25^{\circ} \mathrm{C}$ and Ron Measured at $25^{\circ} \mathrm{C}$

Figure 8. Absolute Ron vs. Time (1 ms to 5 sec) on Linear Scale

Figure 9. Ron Drift vs. Time (1 ms to 5 sec) on Linear Scale, Normalized at Zero

Figure 10. Ron Drift vs. Time (1 ms to 5 sec) on Log Scale, Normalized at Zero

Figure 11. Ron vs. Signal Bias Voltage over Supply Voltages (Measured 5 sec Post Switch Turn On Time, RF1 to RFC On)

Figure 12. Ron vs. Signal Bias Voltage over Temperature (Measured 5 sec Post Switch Turn On Time, RF1 to RFC On)

Figure 13. Hot Switching Probability Distribution on Log Normal with 95\% Confidence Interval (CI), RF Power = Continuous Wave, Terminated into 50 $\Omega, T_{A}=25^{\circ} \mathrm{C}, V_{D D}=3.3 \mathrm{~V}$

Figure 14. Insertion Loss vs. Frequency on Linear Scale ($V_{D D}=3.3 \mathrm{~V}$)

Figure 15. Insertion Loss vs. Frequency over Temperature on Linear Scale ($V_{D D}=3.3$ V, RF1 to RFC)

Figure 16. Insertion Loss and Off Isolation/Return Loss vs.
Frequency ($V_{D D}=3.3$ V, RF1 to RFC)

Figure 17. Off Isolation vs. Frequency, All Switches Off ($V_{D D}=3.3 \mathrm{~V}$)

Figure 18. Off Isolation vs. Frequency, RF1 to RFC On (VDD $=3.3 \mathrm{~V}$)

Figure 19. Crosstalk vs. Frequency ($V_{D D}=3.3 \mathrm{~V}$)

Figure 20. Return Loss vs. Frequency ($V_{D D}=3.3 \mathrm{~V}$)

Figure 21. Insertion Loss vs. Switch Toggles (VDD $=3.3$ V)

Figure 22. 2.5 GHz Insertion Loss Histogram at Various Temperatures, $V_{D D}=3.3 \mathrm{~V}$

Figure 23. 6.0 GHz Insertion Loss Histogram at Various Temperatures, ($V_{D D}=3.3 \mathrm{~V}$

Figure 24. Digital Control Signal and Test Signal vs. Time (VDD $=3.3 \mathrm{~V}$)

Figure 25. $T H D+N$ vs. Signal Amplitude, $V_{D D}=3.3 \mathrm{~V}, R_{L O A D}=300 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Signal Source Impedance $=20 \Omega$

Figure 26. $T H D+N$ vs. Frequency, $V_{D D}=3.3 \mathrm{~V}, R_{L O A D}=300 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Signal Source Impedance $=20 \Omega$

Figure 27. Switch Capacitance vs. Signal Bias Voltage

Figure 28. Output Power vs. Input Power (Signal Frequency $=4 G H z, V_{D D}=$ $3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Figure 29. Insertion Loss vs. Input Power

Figure 30. Oscillator Feedthrough, Zoomed In at 10.2 MHz

Figure 31. Oscillator Feedthrough Wide Bandwidth

EYE DIAGRAMS

Pattern used for eye diagram measurements = pseudorandom binary sequence $($ PRBS $) 2^{23}-1$.

Figure 32. RF1 to RFC with Reference Trace at 3.2 Gbps

Figure 33. RF1 to RFC with Reference Trace at 12.5 Gbps

Figure 34. Eye Diagram Reference Trace at 3.2 Gbps

Figure 35. Eye Diagram Reference Trace at 12.5 Gbps

ADGM1304

TEST CIRCUITS

Test circuits applicable to all channels; additional pins omitted for clarity.

Figure 36. Insertion Loss/Return Loss

Figure 37. Isolation

Figure 38. Crosstalk

Figure 39. Video Feedthrough

Figure 40. Input Second-Order Intermodulation Intercept (IIP2) and Input Third-Order Intermodulation Intercept (IIP3)

Figure 41. Switch Timings, ton and toff

Figure 42. Hot Switching Evaluation Setup, 2 GHz RF Source, 50\% Duty Cycle, 5 kHz Switching Frequency

Figure 43. On Resistance

Figure 44. Second and Third Harmonics, RF Power

Figure 45. On Leakage

Figure 46. Off Leakage

TERMINOLOGY

Insertion Loss (IL)
IL is the amount of signal attenuation between the input and output ports of the switch when the switch is in the on state. IL is expressed in decibels. Ensure that insertion loss is as small as possible for maximum power transfer.
An example calculation of insertion loss based on the setup in Figure 36 is as follows:

$$
I L=-20 \log _{10}\left|S_{\text {RF2RFC }}\right|
$$

where $S_{\text {RF2RFC }}$ is the transmission coefficient measured from RF2 to RFC with RF2 in the on position.
All unused switches are in the off position and terminated in a purely resistive load of 50Ω.

Isolation (Iso)

Iso is the amount of signal attenuation between the input and output ports of the switch when the switch is in the off state. Iso is expressed in decibels. Ensure that isolation is as large as possible.

An example calculation of isolation based on the setup in Figure 37 is as follows:

$$
I_{\text {IsO }}=-20 \log _{10}\left|S_{\text {RFCRF } 1}\right|
$$

where $S_{\text {RFCRFI }}$ is the transmission coefficient measured from RFC to RF1 with RF1 in the off position.
All unused switches are in the off position and terminated in a purely resistive load of 50Ω.

Crosstalk ($\mathrm{C}_{\text {тк }}$)

С тк is a measure of unwanted signals coupled through from one channel to another because of parasitic capacitance. $\mathrm{C}_{\text {TK }}$ is expressed in decibels.
An example calculation of crosstalk based on the setup in Figure 38 is as follows:

$$
C_{T K}=-20 \log _{10}\left|S_{\text {RFIRF }}\right|
$$

where $S_{\text {RFIRF2 }}$ is the transmission coefficient measured from RF1 to RF2 with RF1 in the off position and RF2 in the on position.
All unused switches are in the off position and terminated in a purely resistive load of 50Ω.

Return Loss (RL)

RL is the magnitude of the reflection coefficient (expressed in decibels), and the amount of reflected signal relative to the incident signal.
An example calculation of return loss based on the setup in Figure 36 is as follows:

$$
R L=-20 \log _{10}\left|S_{11}\right|
$$

where S_{11} is the reflection coefficient of the port under test.

Third-Order Intermodulation Intercept (IIP3)

IP3 is the intersection point of the fundamental output power (Pout) vs. input power (P_{IN}) extrapolated line and the thirdorder intermodulation products extrapolated line of a two-tone test. IIP3 is a figure of merit that characterizes the switch linearity.

Second-Order Intermodulation Intercept (IIP2)

IIP2 is the intersection point of the fundamental $P_{\text {out vs. }} \mathrm{P}_{\text {IN }}$ extrapolated line and the second-order intermodulation products extrapolated line of a two-tone test. IIP2 is a figure of merit that characterizes the switch linearity.

Second Harmonic (HD2)

HD2 is the amplitude of the second harmonic, where, for a signal whose fundamental frequency is f, the second harmonic has a frequency 2 f . This measurement is a single tone test, expressed with reference to the carrier signal (dBc).

Third Harmonic (HD3)

HD3 is the amplitude of the third harmonic, where, for a signal whose fundamental frequency is f, the third harmonic has a frequency 3 f. This measurement is a single tone test, expressed with reference to the carrier signal (dBc).

RF Power Rating

The RF power rating is the maximum level of RF power that passes through the switch without degradation to the switch lifetime when it is in the on state.

On Switching Time (t_{ov})
$t_{\text {on }}$ is the time it takes for the switch to turn on. It is measured from 50% of the control signal (INx) to 90% of the on level. No power is applied through the switch during this test (cold switched). The switch is terminated into a 50Ω load.

Off Switching Time (toff)
$t_{\text {off }}$ is the time it takes for the switch to turn off. It is measured from 50% of the control signal (INx) to 10% of the on level. No power is applied through the switch during this test (cold switched). The switch is terminated into a 50Ω load.

Actuation Frequency

The actuation frequency refers to the speed at which the ADGM1304 can be switched on and off. It is dependent on both settling times and on to off switching times.

Wake-Up Time

The wake-up time is a measure of the time required for the voltage on V_{CP} to reach the typical voltage of 80 V after the device exits sleep mode.

Video Feedthrough

Video feedthrough is a measure of the spurious signals present at the RF ports of the switch when the control voltage is switched from high to low or from low to high without an RF signal present.

Internal Oscillator Frequency

The internal oscillator frequency is the value of the on-board oscillator that drives the gate control chip of the ADGM1304.

Internal Oscillator Feedthrough

The internal oscillator feedthrough is the amount of internal oscillator signal that feeds through to the RF pins of the switch. This signal appears as a noise spur on the RFx pin and RFC pin of the switch at the oscillator operating frequency and oscillator harmonics.
On Resistance (Ron)
$\mathrm{R}_{\text {on }}$ is the resistance of a switch in the closed (on) state measured between the package pins. Measure on resistance in 4 -wire mode to eliminate any cabling or PCB series resistances.

On Resistance Drift

On resistance drift is the change in the on resistance of the switch over the specified criteria in Table 1.

Continuously on Lifetime

The continuously on lifetime measures how long the switch is left in a continuously on state. If the switch is left in the on position for an extended period, it affects the turn off mechanism of the device.

Actuation Lifetime

Actuation lifetime is the number of consecutive open to close to open cycles that can complete without the on resistance exceeding a specified limit and no occurrence of failures to open (FTO) or failures to close (FTC).

Cold Switching

Cold switching operates the switch in a mode so that no voltage differential exists between source and drain when the switch is closed or no current is flowing from source to drain when the
switch opens. All switches have longer lives when cold switched.

Hot Switching

Hot switching is operating the switch in a mode where a voltage differential exists between source and drain when the switch is closed and/or current is flowing from RFx channel to RFC channel when the switch is opened. Hot switching results in a reduced switch life, depending on the magnitude of the open circuit voltage between the source and the drain.
Input High Voltage ($\mathrm{V}_{\mathrm{INH}}$)
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
Input Low Voltage ($\mathrm{V}_{\mathrm{INL}}$)
$\mathrm{V}_{\mathrm{INL}}$ is the maximum input voltage for Logic 0 .
Input Current ($\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$)
$\mathrm{I}_{\text {INL }}$ and $\mathrm{I}_{\text {INH }}$ are the low and high input currents of the digital inputs.

Output High Voltage (V_{OH})

$\mathrm{V}_{\text {он }}$ is the minimum output voltage for Logic 1.
Output Low Voltage (Vol)
$V_{\text {OL }}$ is the maximum output voltage for Logic 0 .
Low Power Mode Current ($\mathrm{I}_{\mathrm{DD} \text { ext vcp }}$)
$I_{\text {DD EXT VCP }}$ is the amount of supply current used by the gate driver circuity when the internal oscillator and the charge pump circuitry are turned off by setting the EXTD_EN pin high.
External Drive Current ($\mathbf{I C P E X T}^{\text {ECP }}$)
$\mathrm{I}_{\text {CP EXT VCP }}$ is the amount of current used by the ADGM1304 from the external 80 V power supply when the internal oscillator and charge pump circuitry are turned off by setting the EXTD_EN pin high.

THEORY OF OPERATION

The ADGM1304 is an SP4T switch fabricated using Analog Devices MEMS switch technology. This technology enables high power, low loss, low distortion GHz switches for use in demanding RF applications.
Figure 47 shows a stylized cross section graphic of the switch with dimensions. The switch is an electrostatically actuated cantilever beam connected in a 3 -terminal configuration. Functionally, the switch is analogous to a field effect transistor (FET), and the terminals can be used as a source, gate, and drain.

Figure 47. Cross Section of the MEMS Switch Design Showing the Cantilever Switch Beam (Not to Scale)

When a dc actuation voltage is applied between the gate electrode and the source (the switch beam), an electrostatic force is generated, which attracts the beam toward the substrate. A separate on-board charge pump IC generates the bias voltage, and 80 V is used for actuation.
When the bias voltage between the gate and the source exceeds the threshold voltage of the switch, $\mathrm{V}_{\text {TH }}$, the contacts on the beam touch the drain, which completes the circuit between the source and the drain and turns the switch on. When the bias voltage is removed (0 V on the gate electrode), the beam acts as a spring to generate a sufficient restoring force to open the connection between the source and the drain, break the circuit, and turn the switch off.

Figure 48 shows the SP4T MEMS switch and controller die within the LFCSP. Some of the LFCSP plastic molding material is removed to allow the MEMS switch die (right) and controller die (left) with associated wire bonds to be visible. The silicon hermetically sealed cap covering the switch die is the black rectangle on the right. Hermetically sealing the switches improves the reliability and lifetime of the switches by keeping them in a controlled atmosphere. The switch contacts do not suffer from dry switching or low power switching lifetime degradation.

Figure 48. ADGM1304 LFCSP Package with Molding Compound Partially Removed to Show MEMS Switch Die (Right), Controller Die (Left), and Associated Wire Bonds

PARALLEL DIGITAL INTERFACE

The ADGM1304 is controlled via a parallel interface. Standard CMOS/LVTTL signals applied through this interface control the actuation and release of all the switch channels of the ADGM1304. Applied gate signals are boosted to give the required voltages needed to actuate the MEMS switches.
Setting the $\overline{\text { PIN }} /$ SPI pin low enables the parallel digital interface in 4 -wire SP4T mode. In parallel mode, Pin 1 to Pin 4 (IN1 to IN4) control the switching functions of the ADGM1304. When a Logic 1 is applied to one of these pins, the gate of the corresponding switch is activated and the switch turns on. Conversely, when a Logic 0 is applied to one of these pins, the switch turns off. Note that it is possible to connect more than one RFx input to RFC at a time. Table 6 is the truth table for the ADGM1304.

Table 6. Truth Table When in Parallel Digital Interface Mode

IN1	IN2	IN3	IN4	RF1 to RFC	RF2 to RFC	RF3 to RFC	RF4 to RFC
0	0	0	0	Off	Off	Off	Off
0	0	0	1	Off	Off	Off	On
0	0	1	0	Off	Off	On	Off
0	0	1	1	Off	Off	On	On
0	1	0	0	Off	On	Off	Off
0	1	0	1	Off	On	Off	On
0	1	1	0	Off	On	On	Off
0	1	1	1	Off	On	On	On
1	0	0	0	On	Off	Off	Off
1	0	0	1	On	Off	Off	On
1	0	1	0	On	Off	On	Off
1	0	1	1	On	Off	On	On
1	1	0	0	On	On	Off	Off
1	1	0	1	On	On	Off	On
1	1	1	0	On	On	On	Off
1	1	1	1	On	On	On	On

SPI DIGITAL INTERFACE

The ADGM1304 can be controlled via an SPI digital interface when Pin $6(\overline{\mathrm{PIN}} / \mathrm{SPI})$ is high. The SPI is compatible with SPI Mode 0 (clock polarity $(\mathrm{CPOL})=0$, clock phase $(\mathrm{CPHA})=0)$ and Mode $3(\mathrm{CPOL}=1, \mathrm{CPHA}=1)$ and it operates with SCLK frequencies up to 10 MHz . When the SPI is active, the default mode is addressable, in which, the device registers are accessed by a 16 -bit SPI command that is bound by the state of the $\overline{\mathrm{CS}}$ pin. The ADGM1304 can also operate in daisy-chain mode.
The SPI interface pins of the ADGM1304 are $\overline{\mathrm{CS}}, \mathrm{SCLK}, \mathrm{SDI}$, and SDO. Hold $\overline{\mathrm{CS}}$ low when using the SPI interface. The data on SDI is captured on the rising edge of SCLK and data is propagated out on SDO on the falling edge of SCLK. SDO has push-pull output driver architecture that does not require pull-up resistors.

Addressable Mode

Addressable mode is the default mode for the ADGM1304 on power up. A single SPI frame in addressable mode is bounded by a $\overline{\mathrm{CS}}$ falling edge and the succeeding $\overline{\mathrm{CS}}$ rising edge. It
comprises 16 SCLK cycles. The timing diagram for addressable mode, in SPI Mode 0, is shown in Figure 50.
The first SDI bit indicates if the SPI command is a read or write command. The next seven bits determine the target register address. The remaining eight bits provide the data to the addressed register. The last eight bits are ignored during a read command, during which time the SDO propagates out the data contained in the addressed register.

In Mode 0 , during any SPI command, SDO sends out eight alignment bits on the $\overline{\mathrm{CS}}$ falling edge and the first seven SCLK falling edges (in Mode 3, the first SCLK falling edge is ignored as shown in Figure 50). The alignment bits observed at SDO are 0×25.

The target register address of an SPI command is determined on the eighth SCLK rising edge. Data from the target register propagates out on the SDO pin from the eighth to the $15^{\text {th }}$ SCLK falling edge during SPI reads. A register write occurs on the $16^{\text {th }}$ SCLK rising edge during SPI writes.

Daisy-Chain Mode

The connection of several ADGM1304 devices in a daisy-chain configuration is possible. All devices share the same $\overline{\mathrm{CS}}$ and SCLK lines while the SDO pin of one device forms a connection to the SDI pin of the next device, creating a shift register. In daisy-chain mode, the SDO signal is an 8-cycle delayed version of the SDI signal (see Figure 52).
The ADGM1304 can only enter daisy-chain mode from addressable mode by sending the 16 -bit SPI command, 0×2500. See Figure 52 for an example of this command. When the ADGM1304 receives this command, the SDO pin of the devices sends out the same command because the alignment bits at the SDO pin are 0×25. This command allows multiple daisychained devices to enter daisy-chain mode in a single SPI frame. A hardware reset is required to exit daisy-chain mode.

For the timing diagram of a typical daisy-chain SPI frame, see Figure 53. When the $\overline{\mathrm{CS}}$ pin goes high, Device 1 writes Command 0 to Bits[7:0] to the SWITCH_DATA register, Device 2 writes Command 1 to Bits[7:0] to the switches, and so on. The SPI block uses the last eight bits received through the SDI pin to update the switches. After entering daisy-chain mode, the first eight bits sent out by the SDO pin are 0×00. When $\overline{\mathrm{CS}}$ goes high, the internal shift register value does not reset back to 0 .
An SCLK rising edge reads in data on the SDI pin while data is propagated out of the SDO pin on an SCLK falling edge. The expected number of SCLK cycles are a multiple of eight before the $\overline{\mathrm{CS}}$ pin goes high. When this is not the case, the SPI interface sends the last eight bits received to the SWITCH_DATA register.

Figure 53. Example of a SPI Frame when Three ADGM1304 Devices are Connected in Daisy-Chain Mode

Hardware Reset

The digital portion of the ADGM1304 goes through an initialization phase during $V_{D D}$ power up. To hardware reset the ADGM1304, power cycle the $V_{D D}$ input. After power-up or a hardware reset, ensure there is a minimum of $10 \mu \mathrm{~s}$ before any SPI command is issued. Ensure that VDD does not drop out during the 10μ s initialization phase because it may result in incorrect operation of the ADGM1304.

Internal Error Status

When an internal error is detected in the device, the internal error is flagged by the INTERNAL_ERROR bits (Bits[7:6]) of the SWITCH_DATA register (Register 0x20), as shown in Table 10. An internal error results from an error in the configuration of the device at power up.

INTERNAL OSCILLATOR FEEDTHROUGH

The ADGM1304 has an internal oscillator running at a nominal 10 MHz . This oscillator drives the charge pump circuitry that provides the actuation voltage for each of the switch gate electrodes. Although this oscillator is very low power, the 10 MHz signal is coupled to the switch and can be considered a noise spur on the switch channels. The magnitude of this feedthrough noise spur is specified in Table 1 and is typically -123 dBm or $-146 \mathrm{dBm} / \mathrm{Hz}$ when one switch is on. When all four switches are simultaneously on, the feedthrough goes up to -120 dBm . $V_{D D}$ level and temperature changes affect the frequency of the noise spur. For the maximum and minimum frequency range over temperature and voltage supply range, see Table 1.

INTERNAL OSCILLATOR FEEDTHROUGH MITIGATION

In normal operation, the 80 V actuation voltage is supplied by the driver IC. Setting the EXTD_EN pin (Pin 7) low enables the built in 10 MHz oscillator. This setting enables the charge pump circuitry to generate the 80 V required for MEMS switch actuation. The internal oscillator is a source of noise which couples through to the RF ports. The magnitude of this feedthrough noise spur is specified in Table 1 and is typically -123 dBm or $-146 \mathrm{dBm} / \mathrm{Hz}$ when one switch is on. The internal oscillator feedthrough can be eliminated by setting the EXTD_EN pin high, which disables the internal oscillator and charge pump circuitry. When the internal oscillator and charge
pump circuitry is disabled, the V_{CP} pin (Pin 24) must be driven with 80 V dc $\left(\mathrm{VCP}_{\mathrm{EXT}}\right)$ from an external voltage supply, as outlined in Table 5, required for MEMS switch actuation. The switch can still be controlled via the digital logic interface pins or via SPI interface pins

LOW POWER MODE

Setting the EXTD_EN pin high shuts down the internal oscillator. The ADGM1304 enters low power quiescent state, drawing only $50 \mu \mathrm{~A}$ maximum supply current. When the internal oscillator and charge pump circuitry is disabled, the V_{CP} pin (Pin 24) must be driven with $80 \mathrm{~V} \mathrm{dc}\left(\mathrm{VCP}_{\mathrm{ExT}}\right)$ from an external voltage supply, as outlined in Table 5, required for MEMS switch actuation. The switch can still be controlled via the digital logic interface pins or via SPI interface.

TYPICAL OPERATING CIRCUIT

Figure 54 shows the typical operating circuit for the ADGM1304 as used in the EVAL-ADGM1304SDZ. A 47 pF (100 V rated) external capacitor is required on the V_{CP} pin as a holding capacitor for the 80 V gate drive voltage. The V_{DD} pin is connected to a 3.3 V supply. However, V_{DD} can operate from 3.0 V to 3.6 V . RFGND is separated from AGND internally in the device.

It is recommended to connect RFGND to AGND using one large pad on the PCB to short together EP1 and EP2. Figure 54 shows the ADGM1304 configured to use the internal oscillator as the reference to the driver IC control circuit.
Alternatively, set Pin 7 (EXTD_EN) high and apply 80 V dc directly to Pin 24 to disable the internal oscillator and eliminate all oscillator feedthrough. The switches can then be controlled normally via the logic control interface (Pin 1 to Pin 4) or via the SPI interface.

To avoid any floating nodes, connect a $10 \mathrm{M} \Omega$ shunt resistor to RFGND on all RFx pins (RF1 to RF4, and RFC), as shown in Figure 54. See the Floating Node section for more information. An example of a $10 \mathrm{M} \Omega$ resistor that can be used with the MEMS switch is the Multicomp MCRE000262. The MCRE000262 is tested with the switch and has very small (negligible) impact on the RF performance of the MEMS switch.

APPLICATIONS INFORMATION
 POWER SUPPLY RAILS

It is recommended that a $0.1 \mu \mathrm{~F}$ decoupling capacitor be added to the power supply port of the ADGM1304.
The ADGM1304 can operate with unipolar supplies between 3.0 V and 3.6 V .

The device is fully specified at a 3.3 V analog supply voltage.

POWER SUPPLY RECOMMENDATIONS

Analog Devices has a wide range of power management products to meet the requirements of most high performance signal chains.
An example of a unipolar power solution for the ADGM1304 is shown in Figure 55. The ADP7142 is a low dropout linear regulator that operates from 2.7 V to 40 V and is ideal for regulation of high performance analog and mixed-signal circuits operating from 39 V down to 1.2 V rails. The ADP7142 has $11 \mu \mathrm{~V}$ rms output noise independent of the output voltage. The ADP7142 can be used to power the supply rail for the ADGM1304, a microcontroller, and/or other devices in the signal chain.

Figure 55. Unipolar Power Solution
If low noise performance at the power supply is required, the ADP7142 can be replaced by the LT1962 or the LT3045-1.

Table 7. Recommended Power Management Devices

Product	Description
ADP7142	$40 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO linear regulator
LT1962	300 mA, low noise, micropower, LDO regulator
LT3045-1	$20 \mathrm{~V}, 500 \mathrm{~mA}$, ultralow noise, ultrahigh PSRR linear regulator with VIOC control

SWITCHABLE RF ATTENUATOR

It is common to see RF attenuator networks used in RF instrumentation equipment such as vector network analyzers, spectrum analyzers, and signal generators. Routing RF signals through an attenuator enables the equipment to accept higher power signals and increase the dynamic range of the instrument. In RF attenuation applications like the vector network analyzers, spectrum analyzers, and signal generators, maintaining the bandwidth of the signal after it passes through the network is critical. Any degradation of the signal reduces the performance of the equipment. Therefore, the RF characteristics of the switches used for routing are integral to the quality of an attenuator network.

The ADGM1304 MEMS switch is suited for use as a switchable RF attenuator due to its low flat insertion loss, very wide RF bandwidth, and high reliability. The ADGM1304, as an SP4T switch, also provides added flexibility. Figure 56 shows an example attenuation network configuration using two ADGM1304 switches and three different attenuators. The fourth channel of the switches is used as a nonattenuated route.

Figure 56. Switching RF Attenuators Using ADGM1304 MEMS Switches

RECONFIGURABLE RF FILTER

A reconfigurable RF filter is advantageous in many RF frontend applications. A reconfigurable RF filter provides more saved space. As space becomes more constrained in applications, it is useful to have the option of using an economical reconfigurable RF filter instead of individual frequency dependent filters.

The ADGM1304 has low flat insertion loss, very wide RF bandwidth, low parasitic, low capacitance, and high linearity, and as such, is needed to turn on the lump components (capacitor and inductor). As such, the MEMS switch is suited for reconfigurable filter application.

In applications such as wireless communications or mobile radios, the number of bands and modes constantly increases. A reconfigurable RF filter allows more bands and modes to be covered using the same components.
Figure 57 shows an example of a reconfigurable band-pass filter. The topology shown is of a generalized two section, inductively coupled, single-ended band-pass filter that is nominally centered on 400 MHz (ultrahigh frequency (UHF) band). The MEMS switches are positioned in series with each of the shunt inductors.

Different functions of the switches include or omit a shunt inductor from the circuit. Changing the shunt inductor value affects the bandwidth and center frequency of the filter. Using inductance values from 15 nH to 30 nH significantly alters the bandwidth and center frequency, allowing the filter to dynamically configure to operate in the UHF band or very high frequency (VHF) band while preserving the 50Ω match on the input and
output ports. The low Ron value and large bandwidth of the MEMS switch makes it an ideal choice for dynamic configuration. The low Ron reduces the negative effect a series resistance has on the quality of the shunt inductor. The large bandwidth enables higher frequency band-pass filters.

Figure 57. Reconfigurable Band-Pass Filter Realized Using Two ADGM1304 MEMS Switches

CRITICAL OPERATIONAL REQUIREMENTS
 SYSTEM ERROR CONSIDERATIONS DUE TO ON-RESISTANCE DRIFT

The Ron performance of the ADGM1304 is affected by device to device variation, channel to channel variation, cycle actuations, settling time post turn on, bias voltage, and temperature changes (see Figure 6 to Figure 12 and Figure 59).
In a 50Ω system, the on-resistance drift over switch actuations ($\Delta \mathrm{R}_{\mathrm{on}}$) can introduce system inaccuracy. Figure 58 shows the ADGM1304 connected with the load in a 50Ω system, where R_{s} is the source impedance. To calculate the system error caused by the ADGM1304 on-resistance drift, use the following equation:

$$
\text { System Error }(\%)=\Delta R / R_{\text {LOAD }}
$$

where:
ΔR is the ADGM1304 on-resistance drift.
$R_{\text {LOAD }}$ is the load impedance.
The ADGM1304 on-resistance drift also affects insertion loss, which must be considered when using the device. To calculate the on-resistance impact on insertion loss, use the following equation:

Insertion Loss $=10 \log \left(1+\left(\Delta R / R_{\text {LOAD }}\right)\right)$

Figure 58. 50Ω System Representation Where the ADGM1304 Is Connected with the Load

Table 8. System Error and Insertion Loss Error Due to ADGM1304 Ron Drift

	System	
On-Resistance Drift	Error (\%)	Insertion Loss Error (dB)
4.75	9.5	0.39
5	10	0.41

The on-resistance drift over time specification is -0.25Ω measured after 100 ms , as shown in Figure 8 to Figure 10. According to the plots, the on-resistance drift over time is -0.12Ω after 100 ms . The on resistance of the ADGM1304 typically drifts by -0.05Ω per decade. For example, after 100 ms , the on resistance drifts -0.12Ω. After 1 sec , the on resistance drifts -0.17Ω, and after 10 sec , it drifts -0.22Ω. Therefore, after 1000 sec , the on resistance is expected to drift by -0.32Ω.

ON-RESISTANCE SHIFT DUE TO TEMPERATURE SHOCK POST ACTUATIONS

When the switch is actuated multiples times at one temperature, and if there is a sudden shift in this temperature, a large shift is shown in the switch Ron. Figure 59 shows the absolute Ron performance of the population of devices over actuation lifetime. Figure 59 shows how the absolute Ron of the device drifts over actuation lifetime. During this measurement, the switch is actuated at $85^{\circ} \mathrm{C}$ and the switch $\mathrm{R}_{\text {ON }}$ is measured at $25^{\circ} \mathrm{C}$. Actuating the switch at $85^{\circ} \mathrm{C}$ and measuring $\mathrm{R}_{\text {on }}$ at $25^{\circ} \mathrm{C}$ is the most severe condition for the ADGM1304 Ron drift over actuations.

Figure 59. Population vs. Absolute Ron, Switch Actuated at $85^{\circ} \mathrm{C}$ and Ron Measured at $25^{\circ} \mathrm{C}$

HOT SWITCHING

Hot switching is caused by cycling the switch on or off with a signal applied to the switch. The presence of the applied signal during switching cycle damages the switch contacts. Hot switching damage is dependent on the current or the voltage levels. Hot switching causes a significant reduction in the cycle lifetime of the switch as shown in Table 1 and Figure 13.

Figure 60 shows the hot switching condition when the switch is turned on with a 1 V signal present at the switch terminal during switching.

Figure 60. Hot Switching Condition When Turning the Switch from Off to On State

Figure 61 shows the hot switching condition when the switch is turned off with 10 mA passing through the switch during switching.
SWITCH IS ON SWITCHING FROM ON TO OFF

Figure 61. Hot Switching Condition When Turning the Switch from On to Off State

FLOATING NODE

The ADGM1304 has no internal impedance to ground, and charges can develop on the switch terminals, leading to unreliable switch behavior. To mitigate this behavior, provide a discharge path to all switch nodes. Figure 62 to Figure 65 show examples of cases to avoid where floating nodes can occur when using the switch. Conditions to avoid include the following:

- Leaving the RFx pins open circuit (see Figure 62).
- Connecting a series capacitor directly to the switch (see Figure 63).
- Connecting the RFx pin of two switches together directly or connecting the RFC pin to the RFx pin (see Figure 64 and Figure 65).

Figure 62. RFx Pins Left Open Circuit

Figure 63. Series Capacitor Directly Connected to MEMS Switch

Figure 64. RFx Pins of Two MEMS Switches Directly Connected

Figure 65. RFC Connected to RFx

Provide a discharge path to the switch nodes to avoid floating nodes. In a typical application, a 50Ω termination connected to the switch provides this path. Driving switch nodes with a device of adequate impedance ($<10 \mathrm{M} \Omega$) provides a discharge path. If there is no discharge path in the application circuit, add a $10 \mathrm{M} \Omega$ shunt resistor or inductor on the source RFx pin of the MEMS switch to provide the discharge path. Note that the shunt resistors introduce leakage. Figure 66 shows an example of a configuration providing a discharge path.

Figure 66. Switch Configuration Providing a Discharge Path
Figure 67 and Figure 68 illustrate typical cascaded switch use cases and the corresponding schemes to mitigate floating node risks.

Figure 67. Two ADGM1304 Devices Connected in Path Selection Configuration with $10 \mathrm{M} \Omega$ Shunt Resistors to Mitigate Floating Nodes

Figure 68. Three ADGM1304 Devices Connected in Fanout Configuration with $10 \mathrm{M} \Omega$ Shunt Resistors to Mitigate Floating Nodes

Avoid connecting shunt capacitors directly to the switch. A capacitor can store a charge and potentially lead to hot switching events when the switch opens or closes if there are no alternative discharge paths. These events affect the cycle lifetime of the switch.

CUMULATIVE ON SWITCH LIFETIME

Leaving the switch in an on state for a long period affects the lifetime of the switch because of mechanical degradation effects. These effects can result in the switch failing to turn off. Figure 69 shows a failure rate at $50^{\circ} \mathrm{C}$ where the mean time to failure is 7.2 years (2628 days), resulting in 50% of the sample lot failing at this point.

Figure 69. Cumulative On Switch Lifetime at $50^{\circ} \mathrm{C}, V_{D D}=3.3 \mathrm{~V}$, Sample Size $=31$ Devices

Temperatures above $50^{\circ} \mathrm{C}$ further reduce the switch lifetime. The cumulative on switch lifetime specification is also duty cycle dependent. If the user operates the MEMS switch with a duty cycle of less than 50%, the lifetime of the MEMS switch improves.

HANDLING PRECAUTIONS

ESD Precautions

All RFx pins of the ADGM1304 pass the following ESD limits:

- 100 V, Class 0 HBM, ANSI/ESDA/JEDEC JS-001-2010
- 500 V, Class C2 FICDM, JEDEC JESD22_C101E

All the RFx pins are rated to 500 V FICDM, making the device safe for automated handling and assembly process. Standard ESD precautions should be taken during manufacturing.
100 V HBM rating of ADGM1304 is susceptible to ESD surge due to human body contact. ESD protection should be added if human body contact is expected.

Electrical Overstress (EOS) Precautions

The ADGM1304 is susceptible to EOS. Therefore, take the following precautions:

- The ADGM1304 is an ESD sensitive device. Ensure to take all normal handling precautions, including working only on static dissipative surfaces, wearing wrist straps or other ESD control devices, and storing unused devices in conductive foam.
- Avoid running measurement instruments, such as digital multimeters (DMMs), in autorange modes. Some instruments generate large transient compliance voltages when switching between ranges.
- Use the highest practical DMM range setting (the lowest resolution) for resistance measurements to minimize compliance voltages, particularly during switching.
- Discharge coaxial cables before connecting directly to the switch. Note that coaxial cables can store charge and lead to EOS when directly connected to the switch.
- Avoid connecting large capacitive terminations directly to the switch, as shown in Figure 70. A shunt capacitor can store a charge that potentially leads to hot switching events when the switch opens or closes, affecting the lifetime of the switch.

Figure 70. Avoid Having a Large Capacitor Directly Connected to the MEMS Switch

Mechanical Shock Precautions

The ADGM1304 passes Group D mechanical shocks tests, as detailed in Table 3 in the Absolute Maximum Ratings section. These tests validate the robustness of the device to typical mechanical shocks.

Do not use the device if dropped. To reduce excessive mechanical shock and ESD events, avoid handling of loose devices, as shown in Figure 71.

NOT RECOMMENDED

Figure 71. Situations to Avoid During Handling

REGISTER SUMMARY AND DETAILS

Table 9. Register Summary

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	R/W
0×20	SWITCH_DATA	$[7: 0]$	INTERNAL_ERROR	RESERVED	SW4_EN	SW3_EN	SW2_EN	SW1_EN	0x00	R/W		

SWITCH DATA REGISTER

Address: 0x20, Reset: 0x00, Name: SWITCH_DATA
The switch data register controls the status of the four switches of the ADGM1304.
Table 10. Bit Descriptions for SWITCH_DATA

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	INTERNAL_ERROR	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	Internal Error Detection. These bits determine if an internal error has occurred. No error detected. Error detected. Error detected. Error detected.	0x0	R
[5:4]	RESERVED		Reserved. These bits are reserved. Set these bits to 0.	0x0	R
3	SW4_EN	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	Enable for Switch 4. Switch 4 open. Switch 4 closed.	0x0	R/W
2	SW3_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable for Switch 3. Switch 3 open. Switch 3 closed.	0x0	R/W
1	SW2_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable for Switch 2. Switch 2 open. Switch 2 closed.	0x0	R/W
0	SW1_EN	0 1	Enable for Switch 1. Switch 1 open. Switch 1 closed.	0x0	R/W

ADGM1304

OUTLINE DIMENSIONS

Figure 72. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $5 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Thin Quad (CP-24-9)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADGM1304JCPZ-R2 $_{\text {ADGM1304JCPZ-RL7 }}$	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-24-9		
EVAL-ADGM1304SDZ		Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

