Evaluating the ADIN1200 Robust, Industrial, Low Power, 10 Mbps and 100 Mbps Ethernet PHY

FEATURES

FMC connector for MII interface, MDIO signals, and status signals
Accessible, surface-mount configuration resistors and dial switches

Operates from a single, external, 5 V supply

EVALUATION KIT CONTENTS

2 EVAL-ADIN1200FMCZ evaluation boards
2 MDIO interface dongles

EQUIPMENT NEEDED

5 V power supply rail to connect to EXT_5V connector or 5 V barrel adapter to connect to P4 plug

Ethernet cable

USB cable

PC running Windows 7 and upward

SOFTWARE NEEDED

Ethernet PHY software and GUI (available to download on the ADIN1200 product page)

DOCUMENTS NEEDED

ADIN1 200 data sheet

GENERAL DESCRIPTION

The EVAL-ADIN1200FMCZ allows simplified evaluation of the key features of the ADIN1200 robust, industrial, low power 10 Mbps and 100 Mbps Ethernet physical layer (PHY). The EVAL-ADIN1200FMCZ is powered by a single, external, 5 V supply rail that can be supplied either via the EXT_5V connector or via the P4 plug.
All chip supplies are regulated from the 5 V rail providing supply rails required for AVDD_3P3 and VDDIO.

The P3 field programmable gate array (FPGA) mezzanine card (FMC) connector is provided for connection to a master FPGA system for the media access control (MAC) interface and management data input/output (MDIO) control. The P5 connector provides an alternative means for MDIO control. The EVAL-ADIN1200FMCZ is fitted with a 25 MHz crystal (Y1).
For complete specifications for the ADIN1200 device, see the ADIN1200 data sheet, which must be consulted in conjunction with this user guide when using the EVAL-ADIN1200FMCZ.

UG-1673

TABLE OF CONTENTS

Features 1
Evaluation Kit Contents 1
Equipment Needed 1
Software Needed 1
Documents Needed 1
General Description 1
Revision History 2
EVAL-ADIN1200FMCZ with Optional MDIO Interface DongleConnected.3
Evaluation Board Hardware 4
Power Supplies 4
Power Sequencing 4
Evaluation Board Usage Options 4
Jumper Options 4
Clock Options 4
On-Board EEPROM and LEDs 5
ADIN1200 LED Pin 5
MDIO Interface 5
MDIO Interface Dongle 5
Configuration Pins Setup 6
Software Overview 8
Installing the Ethernet PHY Software 8
Initial Setup 9
Using the Evaluation Software 10
Board Display Showing Connected EVAL-ADIN1200FMCZ Hardware 11
User Buttons Section 11
Link Properties Tab 11
Register Access Tab 12
Clock Pin Control Tab 13
Loopback Tab 13
Test Modes Tab 13
FrameGenerator/Checker 13
Cable Diagnostics Tab 14
Activity Information Window and Linking Status 15
Activity Log Information Section 15
Loading a Script File 15
Troubleshooting. 17
Software Installation Tips 17
Software Tips 17
Hardware Tips 17
Layout Guidelines. 18
Board Stackup 18
Ground Planes 18
Isolation Guidelines 18
Power Supply Decoupling 18
MAC Interface 18
Management Interface 18
Placement of the TVS Diode 18
Thermal Considerations 18
Evaluation Board Schematics and Artwork 19
Ordering Information 26
Bill of Materials. 26

EVAL-ADIN1200FMCZ WITH OPTIONAL MDIO INTERFACE DONGLE CONNECTED

Figure 1.

EVALUATION BOARD HARDWARE POWER SUPPLIES

The EVAL-ADIN1200FMCZ operates from a single, external supply rail.
Apply 5 V either to the P4 plug or to the EXT_5V connector with the JP3 jumper configured for 5 V at Position A .
The rest of the EVAL-ADIN1200FMCZ power requirements are generated from the 5 V supply. The on-board ADP223 device generates the AVDD_3P3 and VDDIO power rails. The default nominal voltages are listed in Table 1.
The VDDIO voltage rail defaults to 2.5 V with the installed components, and can be adjusted if other VDDIO voltages are required by changing the value of the R16 resistor accordingly, as shown in Table 1.

Table 1. Default Device Power Supply Configuration

Supply Rail	Nominal Voltage	Adjustment
AVDD_3P3	3.3 V	Not applicable
VDDIO	2.5 V	1.8 V with $\mathrm{R} 16=130 \mathrm{k} \Omega$
		2.5 V with $\mathrm{R} 16=200 \mathrm{k} \Omega$
		3.3 V with $\mathrm{R} 16=280 \mathrm{k} \Omega$

Table 2 shows an overview of the EVAL-ADIN1200FMCZ current for various operating modes.

Table 2. EVAL-ADIN1200FMCZ Quiescent Current
(EXT_5V = 5 V)

Board Status	Typical Quiescent Current
On Power-Up	30 mA initially
	6.5 mA in energy detect power
down (EDPD) mode	
In Hardware Power-Down (RESET_N Held Low)	6.5 mA
10BASE-TX	50 mA
100BASE-TX	60 mA

POWER SEQUENCING

There are no power sequencing requirements for the ADIN1200 device.
When using the EVAL-ADIN1200FMCZ with the MDIO interface dongle, there is a known sequence requirement for the MDIO interface dongle. It is recommended that the MDIO interface dongle be powered from the USB prior to connection to the EVAL-ADIN1200FMCZ. Alternatively, if issues are observed, restart the graphical user interface (GUI) software to resolve any board connection issues.

EVALUATION BOARD USAGE OPTIONS

The EVAL-ADIN1200FMCZ can be used in two general modes. In standalone mode, the EVAL-ADIN1200FMCZ can be used to evaluate the ADIN1200 in IEEE 802.3 test modes, establish links with a link partner, and evaluate the performance of the
chip. In standalone mode, power the EVAL-ADIN1200FMCZ with a 5 V supply at the EXT_5V connector.
Alternatively, the EVAL-ADIN1200FMCZ has an FMC low pin count (LPC) connector that can be plugged into an FPGA development board. When used with an FPGA board, the media independent interfaces (MIIs), clocks, and light emitting diodes (LEDs) can be connected to the FPGA board where the MAC and upper layers can be implemented for evaluation of the ADIN1200 in a full system.

JUMPER OPTIONS

A minimal number of jumpers on the EVAL-ADIN1200FMCZ must be set for the required operating setup before using the EVAL-ADIN1200FMCZ for evaluation. The functions and default settings of these jumper options are described in Table 3.

Table 3. Default Jumper Options

Link	Position	Function
JP2	B (high)	This jumper sets the write mode of U7. Position A (low): enable writing to the electrically erasable programmable read only memory (EEPROM) Position B (high): write protect the EEPROM (default)
AVDD3P3	Inserted	Nominal 3.3 V VDDIO
Inserted	Nominal 2.5 V	

CLOCK OPTIONS

The EVAL-ADIN1200FMCZ provides the option to supply the ADIN1200 clock requirements from either an on-board crystal oscillator or an external clock applied to the J1 connector.
The crystal oscillators on the EVAL-ADIN1200FMCZ and the MDIO interface dongle include the following:

- Y 1 is a 25 MHz crystal connected across the XTAL_I/CLK_IN/REF_CLK pin and XTAL_O pin of the ADIN1200 on the EVAL-ADIN1200FMCZ.
- Y2 is a 32.768 kHz crystal used on the MDIO interface dongle for the on-board ADuCM3029.
- Y3 is a 26 MHz crystal used on the MDIO interface dongle for the on-board ADuCM3029.

When a 25 MHz external clock is applied to the J1 connector, the R120 resistor must be populated and the Y1 crystal must be removed if the signal applied to J 1 is used by the ADIN1200. The 25 MHz clock must be a sine or square wave signal with an input range of 1.8 V to 2.5 V . See the ADIN1200 data sheet for more information.

ON-BOARD EEPROM AND LEDS

The EVAL-ADIN1200FMCZ has two FPGA controllable LEDs and one unprogrammed, $\mathrm{I}^{2} \mathrm{C}$ EEPROM, U7.

U7 can be programmed with voltage settings to allow the FPGA board to provide the correct voltages on the supply rails. The binary write address of the EEPROM is 10100 GA1 GA0 0 and the read address is 10100 GA1 GA0 1 . GA0 and GA1 are nodes on the schematic for the FMC connector.

ADIN1200 LED PIN

There is one LED pin (LED_0) on the ADIN1200. The LED_0 pin can be configured in various operating modes using the MDIO interface dongle (see the ADIN1200 data sheet). By default, the LED_0 pin LED illuminates when a link is established, and flashes when there is activity.
The LED_0 pin is a multifunction pin shared with the PHY_CFG0 function. Therefore, it can be necessary for the voltage level on the LED_0 pin to be set at a certain value at power-on and reset to configure the ADIN1200 as required. See the ADIN1200 data sheet for more information on the multilevel strapping being used as part of the hardware configuration.
The LED_0 pin has a two-pole rotary switch, S1, to allow easy configuration for all modes of the PHY_CFG0 pin (as set by S4). Table 4 describes the configuration of S1 for the appropriate PHY_CFG0 (S4) pin setting. The LED_0 pin is driven from the AVDD3P3 supply rail (see Figure 2).

Table 4. S1 Switch Positions

Figure 2. Hardware LED_0 Pin Configuration

MDIO INTERFACE

The MDIO interface dongle can be accessed directly through the P5 connector to connect the MDIO interface to the PHY. The MDIO interface dongle also allows interfacing with the EVAL-ADIN1200FMCZ via the Ethernet PHY software GUI running on the PC (see Figure 3).

Figure 3. Simplified Overview of EVAL-ADIN1200FMCZ with MDIO Interface Dongle Connected

MDIO INTERFACE DONGLE

The MDIO interface dongle is a separate board included in the EVAL-ADIN1200FMCZ evaluation kit. The MDIO interface dongle has an on-board ADuCM3029 microcontroller and an FTDI Chip FT232RQ universal asynchronous receive transmitter (UART) to USB interface. The schematic for the MDIO interface dongle is shown in Figure 41. When using the MDIO interface dongle, connect the USB cable to the MDIO interface dongle first, then connect the MDIO interface dongle to the EVAL-ADIN1200FMCZ with the ADuCM3029 facing up (see Figure 4).
Using the MDIO interface dongle allows interaction with the ADIN1200 device via the Ethernet PHY software GUI running on the PC.

Figure 4. MDIO Interface Dongle Connection to the USB Cable and EVAL-ADIN1200FMCZ

There are two LEDs on the MDIO interface dongle, DS7 and DS8. When the powered USB cable is initially connected to the MDIO interface dongle, DS8 illuminates. When the Ethernet PHY software GUI establishes communication with the EVALADIN1200FMCZ, DS7 and DS8 flash. The LEDs continue to flash while the GUI is active, and the EVAL-ADIN1200FMCZ is selected as the local board within the GUI.

The MDIO interface dongle has two push-button switches on the underside of the board, S5 and S6, as shown in Figure 5. S5 is for download and reboot purposes. S6 resets the on-board ADuCM3029.

Figure 5. Overview of MDIO Interface Dongle

CONFIGURATION PINS SETUP

The EVAL-ADIN1200FMCZ default configuration and configuration options are detailed in Table 5. The ADIN1200 configuration settings can be changed by manipulating the resistors listed in the right column. See the ADIN1200 data sheet for more details on all available configuration options. Figure 7 shows the location of the resistors on the underside of the printed circuit board (PCB) of the EVAL-ADIN1200FMCZ. The speed configuration is configured via two rotary switches, S3 and S4, and the media defined interface configuration is controlled using the S 9 switch. Table 5 lists the different switch configurations available.

Figure 6. Mode Switch Configurations

Table 5. EVAL-ADIN1200FMCZ Configuration Settings

Configuration Options	Relevant Pins	Resistor and Switch Settings
PHY Address = 0b00000	RXD_3/PHYAD_3 RXD_2/PHYAD_2 RXD_1/PHYAD_1 RXD_0/PHYAD_0	R22, R29, R31, R37 = do not install R23, R30, R32, R38 = do not install Using internal pull-down resistors
MDIX Mode Configuration	GP_CLK/RX_ER/MDIX_MODE	S9 Position 1, Mode 1, manual MDI S9 Position 2, Mode 2, manual MDIX S9 Position 3, Mode 3, prefer MDIX S9 Position 4, Mode 4, prefer MDI (default)
PHY Configuration Downspeed, EDPD, Energy Efficient Ethernet (EEE), Software Power-Down, Forced Speed	LINK_ST/PHY_CFG1 LED_O/COL/TX_ER/PHY_CFGO	Controlled by S1, S3, and S4 switches to provide the various configuration options (see the ADIN1200 data sheet) Default configuration: S3 $=1$ or 2 for the PHY_CFG1 function, note that the EVALADIN1200FMCZ boards are shipped in pairs with one board set to 1 and the other set to 2 S4 = 4 for the PHY_CFG0 function, and S1 = 1 for the LED_0 function
MAC Interface Selection	RX_CTL/RX_DV/CRS_DV/MACIF_SEL1 RXC/RX_CLK/MACIF_SELO	R8, R9 = do not install R27, R28 = do not install Using internal pull-down resistors results in MAC interface default selection being the reduced gigabit media independent interface (RGMII) MAC interface with 2 ns internal delay on the RXC signal and TXC signal

Figure 7. Configuration Resistor Placement, Underside of PCB

SOFTWARE OVERVIEW
 INSTALLING THE ETHERNET PHY SOFTWARE

The Ethernet PHY software GUI requires the installation of the Ethernet PHY software and the installation of the USB communications drivers. Both installations must be complete before connecting the EVAL-ADIN1200FMCZ to the USB port of the PC to ensure that the evaluation system is correctly recognized when connected to the PC.
First, install the Ethernet PHY software and the ADIN1200 data sheet and the EVAL-ADIN1200FMCZ user guide. The installation steps are listed in the Ethernet PHY Software GUI Installation section. The default location for the Ethernet PHY software GUI installation is the C\Analog Devices folder.
When the Ethernet PHY software installation is complete, install the USB communications drivers. The MDIO interface dongle uses the FT232RQ for UART to USB communication. The MDIO interface dongle requires the installation of drivers for the FTDI Chip USB UART IC. Locate and install this driver separately. These drivers are available at the FTDI website.

Ethernet PHY Software GUI Installation

To install the Ethernet PHY software GUI, take the following steps:

1. Launch the installer file to begin the Ethernet PHY software installation.
2. If a window appears asking for permission to allow the program to make changes to the PC, click Yes.
3. The welcome window appears (see Figure 8). Click Next.

Figure 8. Welcome Window
4. The Ethernet PHY software launches. An overview of the software being installed and recommendations in terms of hardware power-up appears. Read the overview and click Next (see Figure 9).

Figure 9. Installation Process Overview
5. A license agreement appears. Read the agreement and click I Agree to allow the installation to proceed (see Figure 10).

Figure 10. Accepting the License Agreement
6. Select a location to install the Ethernet PHY software and then click Install (see Figure 11).

Figure 11. Installation Location
7. A window appears stating that the installation is complete.

Click Finish to continue (see Figure 12).

Figure 12. Installation Complete
8. The Ethernet PHY software is automatically installed in the Analog Devices folder on the PC. The default folder name is ADIN1300 as the software GUI also supports the ADIN1300. Access the Ethernet PHY software via Windows ${ }^{\text {® }}$ explorer at C: \backslash Analog Devices \backslash ADIN1300 or from the Start menu. When the software loads, it reads the device MODEL_NUM to determine what device is connected and configure the software GUI accordingly (ADIN1200 or ADIN1300).

INITIAL SETUP

To set up the EVAL-ADIN1200FMCZ and use it with the Ethernet PHY software GUI, take the following steps:

1. Connect a 5 V power supply to the EVAL-ADIN1200FMCZ via the EXT_5V connector or the 5 V barrel connector.
2. Connect the USB cable to the MDIO interface dongle.
3. Connect the USB cable to the PC. When connecting the EVAL-ADIN1200FMCZ to the PC for the first time, the drivers are automatically installed. Wait until the driver installation is complete before proceeding to the next step.
4. Ensure that the ADuCM3029 microcontroller faces up (see Figure 4) and connect the MDIO interface dongle to the EVAL-ADIN1200FMCZ. The MDIO interface dongle is not keyed.
5. Launch the Ethernet PHY software from the Analog Devices folder in the Start menu.

USING THE EVALUATION SOFTWARE

When the Ethernet PHY software is launched, the GUI window shown in Figure 13 appears. Figure 13 shows the GUI features with labels, and Table 6 lists the GUI labels and the corresponding descriptions.

Table 6. GUI Label Descriptions

Label	Description
1	Select Local section. Shows connected evaluation hardware. The board name shown corresponds to the MDIO interface dongle that is connected to the EVAL-ADIN1200FMCZ. 2
3	User buttons.
4	Link Properties tab. Use this tab to change the PHY configuration.
5	Register Access tab. Allows the user read or write device registers.
6	Clock Pin Control tab. Controls which clock is applied to the GP_CLK/RX_ER/MDIX_MODE pin.
7	Loopback tab. Controls the various loopback modes.
8	Test Modes tab. Provides access to the various test modes on the device.
9	FrameGenerator/Checker tab. Configures and enables the frame generator and frame checker.
10	Cable Diagnostics tab. Provides easy access to the cable diagnostics features on the device.
11	Activity information window. This window provides an overview of the PHY activity, reads, and writes issued to the device.
12	Activity Log. Window showing read, write, and status activity for the selected PHY.

Figure 13. Main GUI Window

BOARD DISPLAY SHOWING CONNECTED EVAL-ADIN1200FMCZ HARDWARE

In the Select Local section (see Figure 13), a unique hardware identifier is shown for each MDIO interface dongle connected to the PC. In the example shown in Figure 14, there are two MDIO interface dongles connected to the same PC (the A62UK21O and AN3HD9WT).

The Ethernet PHY software GUI can only communicate with one MDIO interface dongle at a time. To choose which MDIO interface dongle is addressed as the local board in this section, click the appropriate device identifier to select and highlight it. All register controls, displayed link properties, and local board information in other sections of the GUI apply to the selected ADIN1200 device connected to the MDIO interface dongle.

Figure 14. MDIO Interface Dongle Selection

USER BUTTONS SECTION

Use the buttons in this section to control the basic operation of the GUI and the ADIN1200 device.

Figure 15. Basic User Buttons

Software Power-Down and Power-Up

Click Software Power Down to place the selected device into software power-down mode where the analog and digital circuits are placed into a low power state. Most clocks are gated off and no link is brought up. Click Software Power Down to enable a software power-down. The button color changes to orange and the button text changes to Software Power Up. Click Software Power Up to exit from the software power-down and restart linking. When the software power-down is asserted, the other buttons for the selected device are grey and disabled.

Disable or Enable Linking

Click Disable Linking to disable linking when a link is up. The button changes from Disable Linking to Enable Linking. Click Enable Linking to enable linking.

Restart Linking

If the software configuration has been changed, click Restart Linking to restart the linking process with the new configuration. If the link is already established, the link is first brought down and then restarted.

Export Registers

Click Export Registers to perform a data dump to the Activity $\mathbf{L o g}$ section. The register dump can be saved to text format for offline review. Right click and click Save as to save the data to a \log file.

Activity Log

2:48:11 PM [VerboseInfo] A62UK210 \quad--> LpEee1000Able $=0 \times 0$ [Link partner 1000BASE-T EEE ability bit.] 2:48:11 PM [VerboseInfo] A62UK210 $\rightarrow->$ LpEee100Able $=0 \times 0$ [Link partner 100BASE-TX EEE ability bit.] 2:48:11 PM [VerboseInfo] A62UK210 EeeLpAbility $=0 \times 0$ [Energy Efficient Ethernet Link Partner Ability Regist 2:48:11 PM [VerboseInfo] A62UK21O $-->$ Eee1000Adv $=0 \times 1$ [The default value of the 1000BASE-T EEE adve 2:48:11 PM [VerboseInfo] A62UK21O --> Eee100Adv = 0x1 [The default value of the 100BASE-TX EEE adver
2:48:11 PM [VerboseInfo] A62UK21O EeeAdv $=0 \times 6$ [Energy Efficient Ethernet Advertisement Register.]
2:48:11 PM [VerboseInfo] A62UK210 $\quad->$ PhyInStndby $=0 \times 1$ [A '1' indicates that the PHY is in standby state
2:48:11 PM [VerboseInfo] A62UK210 $-->$ AutonegStat $=0 \times 0$ [Auto-negotiation status bit.]
2:48:11 PM [VerboseInfo] A62UK21O \quad--> HcdTech $=0 \times 6$ [This field indicates the resolved technology after
2:48:11 PM [VerboseInfo] A62UK210 $\rightarrow->$ AutonegSup $=0 \times 0$ [A ' 1 ' indicates that both the local and remote 2:48:11 PM [VerboseInfo] A62UK21O PhyStatus1 $=0 \times 8300$ [PHY Status 1 Register.]

Figure 16. Activity Log with Export Registers Displayed

Reset

Click Reset to use the dropdown menu to initiate different resets. The reset options include the following:

- Subsystem software reset with pin configuration: click Reset: SubSys (Pin) to perform a reset of the subsystem with the subsystem requesting a new set of hardware configuration pin settings from the chip during the software reset sequence.
The GE_SFT_RST bit and the GE_SFT_RST_CFG_EN bit are set to 1 .
- Subsystem software reset: click Reset: SubSys to perform a reset of the subsystem with the subsystem requesting previously stored hardware configuration pin settings to be reloaded during the software reset sequence.
The GE_SFT_RST bit and the GE_SFT_RST_CFG_EN bit are set to 0 .
- PHY core software reset: click Reset: PHY to perform a reset where the SFT_RST bit resets the PHY core registers.

Figure 17. Reset Options

LINK PROPERTIES TAB

The Link Properties tab provides the user access to the main linking configurations within the device. This tab has a slider to access all controls. When a control is selected, the GUI provides
a prompt describing the function at the bottom of the linking control box (see Figure 18).

Figure 18. Link Properties Tab

Speed Mode

For the selected device, advertised speed or forced speed can be chosen. The speed selection prepopulates the remaining user controls for the Link Properties tab with the following:

- Advertised: subset of controls available in advertised mode. The controls include the following:
- Auto-Negotiation Advertised Speeds: shows the checkbox availability of all autonegotiated advertised speeds available. Select and clear the checkboxes as required. All speed options are available in this section. The default advertised reflects the hardware configuration pins.
- EEE Advertisement: use the checkboxes to advertise the EEE as a speed option for 1000BASE-T and 100BASE-TX.
- Downspeed: use the checkbox to enable downspeed, which allows the PHY to change to a lower speed after a number of attempts to bring up a link at the highest advertised speed.
- Downspeed Retries: sets the number of times the PHY attempts to bring up a link. The default is four attempts.
- MDIX: use the dropdown menu to choose Auto MDIX, FixedMDI, or FixedMDIX (FixedMDI and FixedMDIX not shown in Figure 18).
- Energy Detect PowerDown Mode: use the dropdown menu to choose Disabled, Enabled, or EnabledWithPeriodicPulseTx.
- Forced: subset of controls available in forced mode. The controls include the following:
- Forced Speeds: use the dropdown menu to choose the required speed.
- MDIX: use the dropdown menu to choose Auto, FixedMDI, or FixedMDIX.
- Energy Detect Powerdown Mode: use the dropdown menu to choose Disabled, Enabled, or EnabledWithPeriodicPulseTx.

REGISTER ACCESS TAB

The Browse tab within the Register Access tab allows the user to review the bank of registers and edit the register fields or bit fields as required (see Figure 19).

Figure 19. Register Access Tab Full Register Map
The Manual tab within the Register Access tab allows the user to perform basic reads from and writes to individual ADIN1200 registers (see Figure 20).

Figure 20. Register Access Tab

Access the direct register read/write function on the right side of the Activity Log section. To access this function, slide the arrow to the left to expose it (see Figure 21).

Figure 21. Activity Log Section Register Access

CLOCK PIN CONTROL TAB

Use this tab to control which clock is applied to the GP_CLK/RX_ER/MDIX_MODE pin (see Figure 22).

Link Properties	Register Access	Clock Pin Control	Loopback
GPCLK Pin Control			
Control the clock output on the GPCLK pin.			

Figure 22. Clock Pin Control Tab

LOOPBACK TAB

The various loopback modes are available in this tab (see Figure 23). Consult the ADIN1200 data sheet for a full description of each loopback mode.

Figure 23. Loopback Tab

TEST MODES TAB

Use this tab to initiate the various test mode functions in the device. Select the appropriate test mode and click Execute Test (see Figure 24).

Link Properties	Register Access	Clock Pin Control	Loopback	Test Modes
100BASE-TX VOD measurements.				Bo
Select Test Mode				De
100BASE-TX VOD				
				Ste
				Sp

Figure 24. Test Modes Tab

FRAMEGENERATOR/CHECKER

This tab provides access to the frame generator and frame checker features of the ADIN1200 (see Figure 25).
Control the number of frames generated by the generator, the frame length, and the content of the frame within this tab. Choose to have the frame generator to either run in burst mode or run continuously. To halt the frame generator when the frame generator is running continuously, use the Terminate button.

Use the Remote button to enable the remote device to loop back the data to the local device. To ensure that the appropriate device is selected, choose which connected board is the local, configure that board to generate frames, then configure the other board in remote loopback.

Figure 25. Overview of Frame Generator and Frame Checker

The frame checker information displayed on the screen accumulates the number of frames sent and shows the number of errors observed (see Figure 26).

Figure 26. Frame Generator Status and Frame Checker Result

CABLE DIAGNOSTICS TAB

The cable diagnostic feature allows the user to diagnose issues with the link. Various features within the device are available when the link is established, which measure the quality of the link using features such as the mean squared error (MSE) level and estimated cable length. These measurements are displayed in the main Link Properties tab.

The features in the Cable Diagnostics tab, see Figure 27, are available to run when the link is disabled, such as checking for short circuits, checking for open circuits, and identifying the distance to the first fault (see Figure 29). The LINK_EN bit must be clear to run these checks.

Figure 27. Cable Diagnostics Configuration with Link Up

Click the Disable Linking button to set the LINK_EN bit to 0 to allow diagnostics to be run (see Figure 28 through Figure 30).

Figure 28. Cable Diagnostics Configuration When Link Is Disabled with Cable Connected to Remote PHY

Figure 29. Cable Diagnostics Configuration with Cable Open

Figure 30. Cable Diagnostics Configuration with Cable Crossed

ACTIVITY INFORMATION WINDOW AND LINKING STATUS

This window displays the current status of the selected PHY chip (as determined in the Select Local section) including whether a link is established, the speed of the link, and the speed mode. The Local and Remote sections show the advertised speeds available in the local PHY device and the advertised speeds available that the remote PHY is returning (see Figure 31).

If the user switches between two evaluation boards in the Select Local section, the information shown in these fields updates to reflect the information provided from the board defined as local.

Figure 31. Linking Status
The GUI displays a color code to show the status of the link depending on how the user has configured the device (see Figure 32).

ACTIVITY LOG INFORMATION SECTION

The activity \log reports status information and register write issues to the selected evaluation board (see Figure 33). The activity \log captures the activity in the GUI corresponding to the activity on the local PHY, which indicates the various reads, writes, and information on whether a link is established. When
the frame generator is enabled, this window shows the frame generator activity. The board identification is recorded with each bit field change to clarify which device is being addressed.

```
Activity Log
2:50:36 PM [Info] AL2YSWGN disable Auto-Negotiation
2:50:36 PM [VerboseInfo] AL2YSWGN BitField "AutonegEn" = 0
2:50:35 PM [Info] AL2YSWGN Locally Advertised Speeds : SPEED_
2:50:29 PM [Info] A62UK21O Locally Advertised Speeds : SPEED_.
2:50:28 PM [VerboseInfo] A62UK21O BitField "Fd100Adv" = 0
2:50:21 PM [Info] A62UK21O Remote Advertised Speeds : SPEED_
2:50:21 PM [Info] A62UK21O AutoNegCompleted : True
2:50:19 PM [Info] A62UK21O Remote Advertised Speeds : SPEED_
2:50:18 PM [Info] A62UK21O LinkingEnabled : True
2:50:16 PM [Info] A62UK21O enable Linking
2:50:16 PM [VerboseInfo] A62UK21O BitField "LinkEn" = 1
```

Figure 33. Activity Log Showing Device Status
To clear the activity log, right click and then click Clear. To export the contents of the activity \log for offline review, right click and then click Save as. The file saved is a text file with a default location in the Analog Devices > ADIN1200 folder.

LOADING A SCRIPT FILE

The GUI allows the user to load a sequence of register commands from a file. Within the GUI window, there are two dropdown menus under the Activity Log section where the user can select the script file and the section of the script to run. Click a dropdown menu, choose the script by name, and then click the same dropdown menu again to load the selected script. The activity \log displays the register writes issued from the script.

```
Advertised Speeds: SPEED_10BASE_T_HD SPEED_10BASE_T_FD SPEED_100BASE_TX_HD
idvertised Speeds: SPEED_10BASE_T_HD SPEED_10BASE_T_FD SPEED_100BASE_TX_HD !
}Completed: True
ted Link Speed : SPEED_1000BASE_T_FD
zcvrOk: True
rOk: True
z:AM3PHHG2
is are present: AM3PHHG2 AN3Y4T18
```


Please Choose . Please Choose *

Figure 34. Script File Loading Dropdown Menus

The script file is located in the ADIN1300 folder by default as the software GUI also supports the ADIN1300 device and is named registers_scripts.json (see Figure 35).

Figure 35. Script File Location

The register commands can be loaded with either the register name or the register address, as shown in the simple examples in the file. The commands are loaded sequentially. Create the sequence of write commands using a text editor. Ensure that the exact syntax is copied and match the register names with those in the data sheet to prevent errors reported in the activity log. Give the script a unique name. When the SftPd Down\&Up routine is selected, see the following example:

```
{
    Name: SftPd Down&Up,
    RegisterAccesses: [
        {
            MemoryMap : GEPhy,
            RegisterName: SftPd,
            Value: 1
        },
        {
            MemoryMap : GEPhy,
            RegisterName: SftPd,
            Value: 0
        },
    ]
},
```


TROUBLESHOOTING

SOFTWARE INSTALLATION TIPS

Ethernet PHY software installation tips follow:

- Always allow the software installation to be completed, and keep in mind that the Ethernet PHY software is a twopart installation including the Analog Devices, Inc., package installer (GUI, ADIN1200 data sheet, and EVALADIN1200FMCZ user guide) and the FTDI drivers which can be found at the FTDI website The installation may require a restart of the PC .
- When the MDIO interface dongle is first plugged in via the USB cable, allow the found new hardware wizard to run completely. This step is required prior to starting the Ethernet PHY software.
- If the EVAL-ADIN1200FMCZ does not appear in the GUI window, ensure that the following steps have been completed:
- Power is applied to the EVAL-ADIN1200FMCZ.
- The powered USB connector is connected to the MDIO interface dongle.
- Both the EVAL-ADIN1200FMCZ and the MDIO interface dongle are connected together.
- The Ethernet cable is connected.
- The Ethernet PHY software is launched.

SOFTWARE TIPS

If the Ethernet PHY software does not read any data back, check for any messages in the Activity Log section. There is one known communication bug in the connection of the MDIO interface dongle and EVAL-ADIN1200FMCZ, as discussed in the MDIO Interface Dongle Communications Known Issue section.

MDIO Interface Dongle Communications Known Issue

A known behavior when using the MDIO interface dongle with the EVAL-ADIN1200FMCZ is related to the sequence of how the boards are powered and connected together. If the GUI is open, and the user connects the MDIO interface dongle to the EVAL-ADIN1200FMCZ before connecting the USB power to the MDIO interface dongle, the GUI may not properly establish communications with the MDIO interface dongle.

The GUI polls for the MDIO interface dongle regularly, and if an error in the MDIO interface dongle communications is
found, it is flagged in the Activity Log section and highlighted in red font, as shown in Figure 36. The message also includes a prompt explaining how to resolve the issue.
In the example shown in Figure 36, the user is advised to reset the MDIO interface dongle via Button S6. There are two buttons on the underside of the MDIO interface dongle. In this case, the user must identify S6 and reset. This action restarts the MDIO interface dongle. If the S6 restart does not resolve communications, exit the GUI and relaunch the Ethernet PHY software.

Activity Log

10:18:08 AM [Error] Dongle firmware response is corrupted. Try resetting it via Button S6.
10:18:03 AM [Error] Dongle firmware response is corrupted. Try resetting it via Button S6.
10:17:59 AM [Error] Dongle firmware response is corrupted. Try resetting it via Button S6. 10:17:53 AM [Info] AL2YSWGN PHY NOT in Software Power Down

Figure 36. Example Activity Log when MDIO Interface Dongle is Not Responding

HARDWARE TIPS

Ensure that power is applied to the MDIO interface dongle and EVAL-ADIN1200FMCZ as previously discussed in the Power Sequencing section. Measure the voltage at various points on the EVAL-ADIN1200FMCZ using the AVDD_3P3 and VDDIO test points. Crosscheck the voltages against the information in Table 1.

No Link Established

If no link is established, use the following steps to assist debug:

- Ensure that the Ethernet cable is connected properly to the registered Jack 45 (RJ45) connector and between the evaluation boards or PHY pairs.
- When using two EVAL-ADIN1200FMCZs, ensure that both boards are powered.
- Ensure that the hardware configuration is appropriate for the required linking arrangement.

LED Not Illuminated, But Link Established Reported in GUI

By default, LED_0 illuminates when a link is established, and flashes when there is activity. The EVAL-ADIN1200FMCZ is configured for Mode 3 and Mode 4 by default, with S1 in Position 1. If PHY_CFG0 is to be used in Mode 1 or Mode 2, change the position of S1 from 1 to 2, as described in Table 4.

LAYOUT GUIDELINES

BOARD STACKUP

The EVAL-ADIN1200FMCZ consists of a 4-layer PCB. The layers include the top layer, Layer 2, Layer 3, and the bottom layer. All layers have a copper pour, with an exception around sensitive traces for the MAC and MDI interfaces.

GROUND PLANES

The top and bottom layers of the EVAL-ADIN1200FMCZ mainly carry signal and routing signals from the ADIN1200. The two inner layers are used for ground planes. Layer 2 is a full ground plane. Layer 3 consists primarily of ground with area dedicated to the AVDD_3P3 and VDDIO power planes. Although the ADIN1200 is a mixed-signal device, it only has one type of ground return, GND.

ISOLATION GUIDELINES

Transformer Layout

No metal layers can be directly underneath the transformer to minimize any noise coupling across the transformer.

RJ45 Layout

For optimal electromagnetic computability (EMC) performance, use a metal, shielded, RJ45 connector with the shield connected to chassis ground. There must be an isolation gap between the chassis ground and the IC GND with consistent isolation across all layers.

POWER SUPPLY DECOUPLING

From a PCB layout point of view, it is important to locate the decoupling capacitors as close as possible to the power supply and GND pins to minimize the inductance.

MAC INTERFACE

When routing the MAC interface traces, ensure that the lengths of the pairs are matched. Avoid crossover of the signals where possible. Stubs must be avoided on all signal traces. It is recommended to route traces on the same layer.

MANAGEMENT INTERFACE

MDI Interface

Traces running from the MDI_x_P or MDI_x_N pins of the ADIN1200 to the magnetics must be on the same side of the EVAL-ADIN1200FMCZ (no vias), kept as short as possible (less than 1 inch in length), and individual trace impedance of these tracks must be kept below 50Ω with a differential impedance of 100Ω for each pair. The same recommendations apply for traces running from the magnetics to the RJ45 connector.
Impedance must be kept constant throughout. Any discontinuities may impact signal integrity.

Each pair must be routed together with the same trace widths throughout. Trace lengths must be kept equal where possible and any right angles on these traces must be avoided (use curves or 45° angles in the traces). Stubs must be avoided on all signal traces. It is recommended to route traces on the same layer.

PLACEMENT OF THE TVS DIODE

It is recommended to place the TVS diode close to the ADIN1200 device to ensure minimal track inductance between the external protection and internal protection within the device.

THERMAL CONSIDERATIONS

The ADIN1200 is packaged in an LFCSP package. This package is designed with an exposed pad that must be soldered to the PCB for mechanical and thermal reasons. The exposed paddle acts to conduct heat away from the package and into the PCB. By incorporating an array of thermal vias in the PCB thermal paddle, heat is dissipated more effectively into the inner metal layers of the PCB. When designing the PCB layout for optimum thermal performance, use a 4×4 array of vias under the exposed pad.
This LFCSP device includes two exposed power bars adjacent to the exposed pad at the top and bottom. These power bars are connected to internal power rails and the area around them is a keep out zone. Keep these areas clear of traces or vias.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 37. PHY Schematic

Figure 38. Magnetics
PLACEHOLDERS FOR ADDITIONAL DECOUPLING
ALONG THE SUPPLY TRACE

Figure 39. Power Supplies

Figure 40. FMC Connector
Rev. 0|Page 21 of 29

Figure 41. MDIO Interface Dongle

Figure 42. Schematic Silkscreen, Top

Figure 43. Schematic Silkscreen, Bottom

Figure 44. Top Layer

Figure 45. Layer 2, Ground Layer

Figure 46. Layer 3, Power and Ground Layer

Figure 47. Layer 4, Bottom Layer

ORDERING INFORMATION

BILL OF MATERIALS

Table 7.

Qty	Reference Designator	Description	Supplier	Device Number
3	AVDD3P3, P12, VDDIO	Connector, 2-pole	69157-102HLF	Amphenol FCI
12	$\begin{aligned} & \text { C1, C3, C10, C11, C26, C54, } \\ & \text { C57 to C62 } \end{aligned}$	Capacitor, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, 10 \%$, C0402, X7R	530L104KT16T	American Technical Ceramics
10	$\begin{aligned} & \text { C2, C9, C12, C28, C52, C53, } \\ & \text { C63, C87, C89, C90 } \end{aligned}$	Capacitor, $0.01 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$, C0402, X7R	$\begin{aligned} & \text { C1005X7R1E103K05 } \\ & \text { OEB } \end{aligned}$	TDK
2	C24, C29	Capacitor, $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, C0402, X7R	C1005X7R1H104K05 OBE	TDK
4	C31, C36, C38, C56	```Capacitor, 4.7 \muF, 25 V, 10%, C1206H71, X7R```	C1206C475K3RACTU	KEMET
2	C34, C37	Capacitor, $1 \mu \mathrm{~F}, 100 \mathrm{~V}, 10 \%$, C0805, ceramic X7S	C2012X7S2A105K	TDK
2	C4, C39	$\begin{aligned} & \text { Capacitor, } 0.001 \mu \mathrm{~F}, 3000 \mathrm{~V}, 10 \% \text {, } \\ & \text { C1812H71, X7R } \end{aligned}$	C1812C102KHRACTU	KEMET
2	C41, C42	Capacitor, 12 pF, 50 V, 1\%, C0402, NPO (COG)	GJM1555C1H120FB0 1D	Murata
3	C44, C47, C48	Capacitor, $4.7 \mu \mathrm{~F}, 10 \mathrm{~V}, 10 \%, \mathrm{C} 0603, \mathrm{X} 6 \mathrm{~S}$	GRM185C81A475KE 11D	Murata
13	$\begin{aligned} & \text { C64, C66 to C69, C73, C74, } \\ & \text { C76, C78 to C81, C85 } \end{aligned}$	Capacitor, $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%, \mathrm{C} 0402$, X7R	$\begin{aligned} & \text { CGA2B3X7R1H104K } \\ & \text { 050BB } \end{aligned}$	TDK
1	C65	Capacitor, $4.7 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, C0805, ceramic, X7R, general-purpose	GRM21BZ71H475KE 15L	Murata
2	C70, C72	Capacitor, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$, C0805, X5R	C2012X5R1E106K08 5AC	TDK
2	C71, C77	Capacitor, 8 pF, $16 \mathrm{~V}, 10 \%$, C0402, C0G	0402YA8R0DAT2A	AVX Corporation
2	C75, 882	Capacitor, $20 \mathrm{pF}, 16 \mathrm{~V}, 5 \%$, C0402, C0G	0402YA200JAT2A	AVX Corporation
2	C83, C84	Capacitor, $0.47 \mu \mathrm{~F}, 35 \mathrm{~V}, 10 \%$, C0603, X7R	GMK107B7474KAHT	TAIYO YUDEN
2	C86, C88	Capacitor, $2.2 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, C0805, X7R	UMK212BB7225KG-T	TAIYO YUDEN
1	D3	6 V , SOT23_6, TVS array, low capacitance electrostatic discharge (ESD) protection	SP0504SHTG	Littelfuse, Inc.
3	DS1, DS4, DS5	1.7 V, LED red clear, 660 nm	SML-LX0805SRC-TR	Lumex, Inc.
1	DS7	LED green surface-mount device	APHHS1005ZGC	Kingbright
1	DS8	LED hyper red SMD	APHHS1005SURCK	Kingbright
1	E2	Ferrite bead, $1 \mathrm{k} \Omega, 0805$	BK2125HS102-T	TAIYO YUDEN
1	EXT_5V	PCB connector header 3.81 mm	1803277	Phoenix Contact
1	JP2	Jumper, 3-position, male unshrouded single row, 2.54 mm pitch, 3 mm solder tail	M20-9990345	Harwin
3	L1, L3, L5	Inductor, $10 \mathrm{nH}, 2 \%$, L0603, wire wound	LQW18AN10NG10D	Murata Manufacturing
4	L6 to L9	Inductor, $120 \mathrm{nH}, 25 \%$, L0805	BLM21BB750SN1B	Murata Manufacturing
1	P1	RJ45, single port, shielded	5406299-1	TE Connectivity
1	P3	PCB connector, single-ended array, male 160-position, FMC	ASP-134604-01	Samtec
1	P4	PCB connector	PJ-002AH-SMT-TR	CUI
1	P5	PCB connector, 8-position, socket strip, double row, right angled, 2.54 mm pitch	SSW-104-02-T-D-RA	Samtec Inc.
1	P7	PCB connector, right angled, male header	TSW-104-08-T-D-RA	Samtec
1	P8	PCB connector, female, mini USB2.0	UX60SC-MB-5S8	Hirose Electric
1	Q2	45 V SOT23-M3, NPN transistor	BC817	NXP Semiconductors
1	R1	Resistor, 3.01 k $\Omega, 1 \%$, R0402	ERJ-2RKF3011X	Panasonic

Qty	Reference Designator	Description	Supplier	Device Number
20	$\begin{aligned} & \text { R6, R10, R26, R53, R63, R80, } \\ & \text { R84, R87, R88, R90, R92, R112, } \\ & \text { R148, R150, R194, R195, R196, } \\ & \text { R210, R211, R213 } \end{aligned}$	Resistor, 0 , , $50 \mathrm{~V}, 1 \%$, R0402	MC00625W040210R	Multicomp (SPC)
6	$\begin{aligned} & \text { R39, R103, R115, R117, R207, } \\ & \text { R209 } \end{aligned}$	Resistor, $56 \mathrm{k} \Omega$, 1\%, R0603	MC 0.063W 0603 1\% 56K.	Multicomp (SPC)
14	R24, R33, R34, R40, R51, R69, R70, R104, R114, R116, R118, R197, R206, R208	Resistor, $10 \mathrm{k} \Omega$, not applicable, 1\%, R0603	MC0063W0603110K	Multicomp (SPC)
2	R75, R106	Resistor, $1 \mathrm{k} \Omega, 1 \%$, R0603	MC0063W060311K	Multicomp (SPC)
2	R107, R145	Resistor, $1.5 \mathrm{k} \Omega, 50 \mathrm{~V}, 1 \%$, R0603	MC 0.063W 0603 1\% 1K5	Multicomp (SPC)
1	R11	Resistor, $280 \mathrm{k} \Omega$, not applicable, 0.1%, R0603	ERA-3AEB2803V	Panasonic
4	R72, R74, R113, R144	Resistor, 0 ת, 1\%, R0603	MC0603WG00000T5 E-TC	Multicomp (SPC)
2	R12, R52	Resistor, $50 \mathrm{k} \Omega, 0.1 \%$, R0603	PNM0603E5002BST5	Vishay
1	R121	Resistor, $1 \mathrm{M} \Omega, 1 \%$, R0201	ERJ-1GNF1004C	Panasonic
1	R122	Resistor, 4.7 k , $25 \mathrm{~V}, 1 \%$, R0201	MC0201L6F4701SE	Multicomp (SPC)
6	R123, R124, R130, R131, R135, R136	Resistor, $100 \mathrm{k} \Omega$, not applicable, 1%, R0201	ERJ-1GNF1003C	Panasonic
2	R125, R137	Resistor, $1 \mathrm{k} \Omega$, 1\%, R0201	ERJ-1GNF1001C	Panasonic
3	R126, R128, R129	Resistor, $33 \Omega, 1 \%$, R0201	ERJ-1GNF33R0C	Panasonic
1	R127	Resistor, 0 , 5\%, R0201	CR0201-J/-000GLF	Bourns
3	R132, R133, R134	Resistor, $100 \Omega, 1 \%$, R0201	ERJ-1GNF1000C	Panasonic
1	R149	Resistor, $82 \mathrm{k} \Omega, 1 \%$, R0603	$\begin{aligned} & \text { MC 0.063W } 0603 \text { 1\% } \\ & 82 \mathrm{~K} \end{aligned}$	Multicomp (SPC)
1	R16	Resistor, $200 \mathrm{k} \Omega, 1 \%$, R0603	ERJ-3EKF2003V	Panasonic
1	R192	Resistor, $100 \mathrm{k} \Omega, 1 \%$, R0603	RC0603JR-07100KL	Yageo
1	R193	Resistor, $10 \mathrm{k} \Omega, 1 \%$, R0402	ERJ-2RKF1002X	Panasonic
4	R2 to R5	Resistor, $75 \Omega, 1 \%$, R0603	ERJ-3EKF75R0V	Panasonic
1	R43	Resistor, 390Ω, 5\%, R0402	ERJ-2GEJ391X	Panasonic
2	R7, R46	Resistor, 470Ω, 1\%, R0402	RC0402FR-07470RL	Yageo
6	R50, R81, R86, R89, R93, R99	Resistor, $10 \Omega, 1 \%$, R0402	MC00625W0402110R	Multicomp (SPC)
1	S1	Switch rotary selector, 2-position, surface mount	CS-4-12XTA	NIDEC COPAL ELECTRONICS
3	S2, S5, S6	Switches, tactile, microminiature top actuated, single pole, single throw, normally open (SPST-NO)	$\begin{aligned} & \text { PTS830 GM140 } \\ & \text { SMTR LFS } \end{aligned}$	C\&K
3	S3, S4, S9	Switch, rotary SP4T (single pole, 4 throw)	CS-4-14NA	Nidec Copal Electronics
1	T1	Transformer, 10 BASE-Te, 100 BASE-TX modules 1:1 turns ratio	HX1260NL	Pulse Electronics
1	U1	IC, robust, industrial low power 10 Mbps/100 Mbps Ethernet PHY	ADIN1200	Analog Devices
1	U10	IC, USB to UART	FT232RQ	Future Technology Devices International, Ltd. (FTDI Chip)
1	U11	IC, TTL single AND gate, SC70-5	SN74LVC1G08DCKR	Texas Instruments
1	U12	IC, 3.3 V linear regulator	ADP124ARHZ-3.3-R7	Analog Devices
3	U3, U13, U14	IC, dual supply transceiver, three-state	74AVC1T45GW,125	NXP Semiconductors
1	U4	IC, dual, 300 mA adjustable output, low noise, high power supply rejection ratio voltage regulator	ADP223ACPZ-R7	Analog Devices
1	U7	IC, ${ }^{2} \mathrm{C}$-compatible serial EEPROM 2 kB	AT24C02D-SSHM-T	ATMEL

Qty	Reference Designator	Description	Supplier	Device Number
1	U9	IC, ultralow power Arm ${ }^{\oplus}$ Cortex-M3 micro-controller with integrated power management and 256 kB of embedded flash memory	ADUCM3029BCPZ	Analog Devices
1	Y1	Crystal, $25 \mathrm{MHz}, 10 \mathrm{ppm}, 10 \mathrm{pF}$ load capacitor	FA- $128 _25.000000 \mathrm{MHZ}-$ 1	Y2
1	Y3	Crystal, $32.768 \mathrm{kHz}, 20 \mathrm{ppm}, 6 \mathrm{pF}$ load capacitor Crystal, $26 \mathrm{MHz}, 30 \mathrm{ppm}, 0 \mathrm{pF}$ load capacitor	ABS07-120- $32.768 \mathrm{KHZ-T}$	Abracon Corp.

Table 8. Not Populated

Qty	Reference Designator	Description	Supplier	Device Number
15	12V_FPGA, GND1, GND3, GND5, GPCLK, INT_N, LDO_CAP, LED_0, LINK_ST, MDC, MDIO, P9, P10, P11, SUPPLY	Test point, do not insert	1405-2	Keystone Electronics
5	C5, C6, C18, C55, C92	Capacitor, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, 10 \%$, C0402, X7R	530L104KT16T	American Technical Ceramics
4	C33, C45, C91, C99	Capacitor, $0.01 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$, 0402, X7R	TDK	C1005X7R1E103K050EB
1	J1	PCB connector, straight SubMiniature Version A (SMA)	TE Connectivity LTD	5-1814832-1
8	$\begin{aligned} & \text { R49, R65, R67, R95, R97, R101, } \\ & \text { R111, R120 } \end{aligned}$	Resistor, 0 , $50 \mathrm{~V}, 1 \%, 0402$	Multicomp (SPC)	MC00625W040210R
4	R138 to R141	Resistor, 0Ω, R0805	Multicomp (SPC)	MC 0.1W 0805 OR
1	R19	Resistor, $1 \mathrm{M} \Omega, 1 \%, 0402$	Panasonic	ERJ-2RKF1004X
12	$\begin{aligned} & \text { R8, R9, R22, R23, R27 to R32, } \\ & \text { R37, R38 } \end{aligned}$	Resistor, $10 \mathrm{k} \Omega, 1 \%, 0603$	Multicomp (SPC)	MC0063W0603110K
1	R85	Resistor $10 \Omega, 1 \%$, 0402	Multicomp (SPC)	MC00625W0402110R
1	SHIELD	PCB connector, 4 mm socket	Rapid	20054

NOTES

$1^{2} C$ refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

,
 ESD Caution
 ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions
By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board ta that time. LIMITATION OF LIABILTY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECTTO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILTY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($\$ 100.00$). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Ethernet Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
XAUI-RISER-B KSZ8081RNB-EVAL KSZ8863FLL-EVAL KSZ8873MLL-EVAL PD-IM-7648M PD-IM-7648T4 PD70101EVB15F-12 PD70101EVB6F PD70211EVB50FW-5 PD70211EVB72FW-12 EV09H26A EV44F42A DP83620-EVK/NOPB WIZ550S2E-232-EVB $\underline{\text { DFR0272 A000024 DFR0125 UKIT-006GP UKIT-003FE UKIT-002GB UKIT-001FE EVB-KSZ9477 OM-E-ETH UP-POE-A20-0001 }}$ 29713785 ASX00006 ASX00021 ASX00026 XTIB-E ESP32-ETHERNET-KIT-VE EVB-KSZ9897-1 KSZ9031MNX-EVAL AC164121 AC164132 AC320004-5 AC320004-6 AC320004-7 DM320114 DM990004 EV02N47A EV44C93A EVB-KSZ8563 EVB-KSZ9477-1 EVB-KSZ9893 EVB-LAN7430 EVB-LAN7431-EDS EVB-LAN7800LC-1 EVB-LAN7850 EVB-LAN9252-3PORT

