FEATURES

Half-duplex, isolated RS-485 transceiver PROFIBUS ${ }^{\ominus}$ compliant
ANSI EIA/TIA 485-A and ISO 8482: 1987(E) compliant
20 Mbps data rate
5 V or 3 V operation ($V_{\text {DD1 }}$)
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Isolated DE status output
Receiver open-circuit, fail-safe design
Thermal shutdown protection
50 nodes on bus
Safety and regulatory approvals
UL recognition- $\mathbf{2 5 0 0}$ V $_{\text {rms }}$ for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
IEC 609501800 V $_{\text {rms }}$ (basic), 400 V $_{\text {rms }}$ (reinforced)
VDE Certificate of Conformity DIN V VDE 0884-10 (VDE V 0884-10): 2006-12

$V_{\text {IORм }}=560$ V peak

Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Wide body, 16-lead SOIC package

APPLICATIONS

Isolated RS-485/RS-422 interfaces
PROFIBUS networks
Industrial field networks
Multipoint data transmission systems

GENERAL DESCRIPTION

The ADM2486 differential bus transceiver is an integrated, galvanically isolated component designed for bidirectional data communication on multipoint bus transmission lines. It is designed for balanced transmission lines and complies with ANSI EIA/TIA-485-A and ISO 8482: 1987(E).

The device employs Analog Devices i Coupler ${ }^{\circledR}$ technology to combine a 3-channel isolator, a three-state differential line driver, and a differential input receiver into a single package. The logic side of the device is powered with either a 5 V or a 3 V supply, and the bus side uses an isolated 5 V supply.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
The ADM2486 driver has an active-high enable feature. The driver differential outputs and the receiver differential inputs are connected internally to form a differential input/output port that imposes minimal loading on the bus when the driver is disabled or when VDD1 or VDD2 $=0 \mathrm{~V}$. Also provided is an active-high receiver disable feature that causes the receive output to enter a high impedance state.

The device has current-limiting and thermal shutdown features to protect against output short circuits and situations where bus contention may cause excessive power dissipation. The part is fully specified over the industrial temperature range and is available in a 16 -lead, wide body SOIC package.

Rev. E

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Timing Specifications 5
ADM2486 Characteristics 6
Package Characteristics 6
Regulatory Information 6
Insulation and Safety-Related Specifications 6
VDE 0884-10 Insulation Characteristics. 7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configuration and Function Descriptions. 9
Test Circuits 10
REVISION HISTORY
11/13-Rev. D to Rev. E
Changes to Features Section 1
Changes to Table 4 6
Changes to VDE 0884-10 Insulation Characteristics Section and Table 6 7
Updated Outline Dimensions 18
Changes to Ordering Guide 18
2/06-Rev. C to Rev. D
Updated Format Universal
Changes to Table 1 3
Changes to Table 8 9
Changes to Figure 22 and Figure 23 13
Changes to Table 9 and Table 10 14
Added PC Board Layout Section 16
Changes to Isolated Power Supply Circuit Section and Figure 32 17
Switching Characteristics 11
Typical Performance Characteristics. 12
Circuit Description 14
Electrical Isolation. 14
Truth Tables. 14
Power-Up/Power-Down Thresholds 14
Thermal Shutdown 15
Receiver Fail-Safe Inputs 15
Magnetic Field Immunity 15
Applications Information 16
PC Board Layout 16
Power_Valid Input 16
Isolated Power Supply Circuit 17
Outline Dimensions 18
Ordering Guide 18
3/05—Rev. B to Rev. C
Change to Package Characteristics 7
Changes to Figure 12, Figure 14, and Figure 15 11
Change to Power_Valid Input Section 16
1/05—Rev. A to Rev. B
Added PROFIBUS logo 1
11/04—Rev. 0 to Rev. A
Changes to Figure 1. 1
Changes to Figure 6 10
Added Figure 22 through Figure 25 13
Updated Outline Dimensions 18
Changes to Ordering Guide 18

SPECIFICATIONS

$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DRIVER					
Differential Outputs					
Differential Output Voltage, $\mathrm{V}_{\text {OD }}$			5	V	$R=\infty$, see Figure 3
	2.1		5	V	$R=50 \Omega$ (RS-422), see Figure 3
	2.1		5	V	$R=27 \Omega$ (RS-485), see Figure 3
	2.1		5	V	$\mathrm{V}_{\text {TST }}=-7 \mathrm{~V} \text { to }+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 1} \geq 4.7,$ see Figure 4
$\Delta\left\|\mathrm{V}_{\text {od }}\right\|$ for Complementary Output States			0.2	V	$\mathrm{R}=27 \Omega$ or 50Ω, see Figure 3
Common-Mode Output Voltage, Voc			3	V	$\mathrm{R}=27 \Omega$ or 50Ω, see Figure 3
$\Delta \mid$ oc\| for Complementary Output States			0.2	V	$\mathrm{R}=27 \Omega$ or 50Ω, see Figure 3
Output Short-Circuit Current, Vout = High	60		200	mA	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {Out }} \leq+12 \mathrm{~V}$
Output Short-Circuit Current, Vout = Low	60		200	mA	$-7 \mathrm{~V} \leq \mathrm{Vout}^{5} \leq+12 \mathrm{~V}$
Driver Enable Output, DE Pin					
Output High Voltage	$V_{\text {DD2 } 2}-0.1$			V	$\mathrm{l}_{\text {Ide }}=20 \mu \mathrm{~A}$
	$V_{\text {DD2 }}-0.3$	$V_{\text {DD2 } 2}-0.1$		V	l Iode $=1.6 \mathrm{~mA}$
	VDD2 - 0.4	$V_{D D 2}-0.2$		V	lode $=4 \mathrm{~mA}$
Output Low Voltage			0.1	V	$\mathrm{l}_{\text {IDE }}=-20 \mu \mathrm{~A}$
		0.1	0.3	V	$\mathrm{l}_{\text {IdE }}=-1.6 \mathrm{~mA}$
		0.2	0.4	V	lode $=-4 \mathrm{~mA}$
Logic Inputs					
Input High Voltage	$0.7 \mathrm{~V}_{\mathrm{DD} 1}$			V	TxD, RTS, $\overline{\mathrm{RE}}, \mathrm{PV}$
Input Low Voltage			$0.25 \mathrm{~V}_{\text {DD } 1}$	V	TxD, RTS, $\overline{\mathrm{RE}}, \mathrm{PV}$
CMOS Logic Input Current (TxD, RTS, $\overline{\mathrm{RE}}, \mathrm{PV}$)	-10	+0.01	+10	$\mu \mathrm{A}$	TxD, RTS, $\overline{\mathrm{RE}}, \mathrm{PV}=\mathrm{V}_{\mathrm{DD} 1}$ or 0 V
RECEIVER					
Differential Inputs					
Differential Input Threshold Voltage, $\mathrm{V}_{\text {TH }}$	-200		+200	mV	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {cm }} \leq+12 \mathrm{~V}$
Input Hysteresis		70		mV	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {сM }} \leq+12 \mathrm{~V}$
Input Resistance (A, B)	20	30		$\mathrm{k} \Omega$	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {cm }} \leq+12 \mathrm{~V}$
Input Current (A, B)			0.6	mA	$\mathrm{V}_{\mathrm{IN}}=+12 \mathrm{~V}$
			-0.35	mA	$\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$
RxD Logic Output					
Output High Voltage	$V_{D D 1}-0.1$			V	lout $=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=0.2 \mathrm{~V}$
	VDD1-0.4	$V_{\text {DD } 1}-0.2$		V	lout $=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=0.2 \mathrm{~V}$
Output Low Voltage			0.1	V	lout $=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=-0.2 \mathrm{~V}$
		0.2	0.4	V	$\mathrm{l}_{\text {lout }}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=-0.2 \mathrm{~V}$
Output Short-Circuit Current	7		85	mA	$\mathrm{V}_{\text {out }}=\mathrm{GND}$ or $\mathrm{V}_{\text {cc }}$
Three-State Output Leakage Current			± 1	$\mu \mathrm{A}$	$0.4 \mathrm{~V} \leq \mathrm{V}_{\text {Out }} \leq 2.4 \mathrm{~V}$
POWER SUPPLY CURRENT					
Logic Side			1.3	mA	$\mathrm{RTS}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$
			1.0	mA	$2 \mathrm{Mbps}, \mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$, see Figure 5
	4.0			mA	$20 \mathrm{Mbps}, \mathrm{V}_{\text {DD } 1}=5.5 \mathrm{~V}$, see Figure 5
			0.8	mA	$\mathrm{RTS}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 1}=3 \mathrm{~V}$
			1.1	mA	$2 \mathrm{Mbps}, \mathrm{V}_{\mathrm{DD} 1}=3 \mathrm{~V}$, see Figure 5
		2.1		mA	$20 \mathrm{Mbps}, \mathrm{V}_{\mathrm{DD} 1}=3 \mathrm{~V}$, see Figure 5
Bus Side			3.0	mA	RTS $=0 \mathrm{~V}$
		43.0		mA	$2 \mathrm{Mbps}, \mathrm{RTS}=\mathrm{V}_{\mathrm{DD} 1}$, see Figure 5
		58.0		mA	20 Mbps , RTS = VDD1, see Figure 5

Parameter	Min Typ Max	Unit	Test Conditions/Comments	
COMMON-MODE TRANSIENT IMMUNITY ${ }^{1}$	25		$\mathrm{kV} / \mu \mathrm{ss}$	$\mathrm{V}_{\mathrm{cm}}=1 \mathrm{kV}$, transient magnitude $=800 \mathrm{~V}$
HIGH FREQUENCY, COMMON-MODE NOISE IMMUNITY		100	mV	$\mathrm{V}_{\text {HF }}=+5 \mathrm{~V},-2 \mathrm{~V}<\mathrm{V}_{\text {TEST2 }}<+7 \mathrm{~V}$, $1 \mathrm{MHz}<\mathrm{f}_{\text {TEST }}<50 \mathrm{MHz}$, see Figure 6

${ }^{1}$ Common-mode transient immunity is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. $\mathrm{V}_{\text {cm }}$ is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common-mode is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

TIMING SPECIFICATIONS

$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DRIVER					
Maximum Data Rate	20			Mbps	
Propagation Delay, tplh, $\mathrm{t}_{\text {PHL }}$	25	45	55	ns	$\mathrm{R}_{\text {LDIFF }}=54 \Omega, \mathrm{C}_{\text {L1 }}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$, see Figure 7
RTS-to-DE Propagation Delay	20	35	55	ns	See Figure 8
Pulse Width Distortion, tpwo			5	ns	RLDIFF $=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$, see Figure 7 and Figure 12
Switching Skew, tskew		2	5	ns	RLDIFF $=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$, see Figure 7 and Figure 12
Rise/Fall Time, $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{F}$		5	15	ns	$R_{\text {LDIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$, see Figure 7 and Figure 12
Enable Time		43	53	ns	See Figure 9 and Figure 14
Disable Time		43	55	ns	See Figure 9 and Figure 14
Enable Skew, $\left\|\mathrm{t}_{\text {AzH }}-\mathrm{t}_{\text {BzL }}\right\|,\left\|\mathrm{t}_{\text {AzL }}-\mathrm{t}_{\text {BzH }}\right\|$		1	3	ns	See Figure 9 and Figure 14
Disable Skew, $\left\|\mathrm{t}_{\text {AHz }}-\mathrm{t}_{\text {BLI }}\right\|,\left\|\mathrm{t}_{\text {ALZ }}-\mathrm{t}_{\text {BHZ }}\right\|$		2	5	ns	See Figure 9 and Figure 14
RECEIVER					
Propagation Delay, tplh, tphl	25	45	55	ns	$C_{L}=15 \mathrm{pF}$, see Figure 10 and Figure 13
Differential Skew, tskew			5	ns	$C_{L}=15 \mathrm{pF}$, see Figure 10 and Figure 13
Enable Time		3	13	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{L}=15 \mathrm{pF}$, see Figure 11 and Figure 15
Disable Time		3	13	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{L}=15 \mathrm{pF}$, see Figure 11 and Figure 15
POWER_VALID INPUT					
Enable Time		1	2	$\mu \mathrm{s}$	
Disable Time		3	5	$\mu \mathrm{s}$	

ADM2486 CHARACTERISTICS

PACKAGE CHARACTERISTICS

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-to-Output) ${ }^{1}$	R-o		10^{12}		Ω	
Capacitance (Input-to-Output) ${ }^{1}$	$\mathrm{Cl}_{1-\mathrm{O}}$		3		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	Cl_{1}		4		pF	
Input IC Junction-to-Case Thermal Resistance	θ_{jcI}		33		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center
Output IC Junction-to-Case Thermal Resistance	$\theta_{\text {лсо }}$		28		${ }^{\circ} \mathrm{C} / \mathrm{W}$	of package underside

${ }^{1}$ Device considered a 2-terminal device: Pin 1 through Pin 8 shorted together, and Pin 9 through Pin 16 shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADM2486 has been approved by the following organizations:
Table 4.

Organization	Approval Type	Notes
UL	Recognized under 1577 component recognition program. File E214100.	In accordance with UL1577, each ADM2486 is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}_{\text {rms }}$ for 1 sec (current leakage detection limit $=5 \mu \mathrm{~A}$).
CSA	Approved under CSA Component Acceptance Notice \#5A. File 205078. IEC 609501800 V $_{\text {rms }}\left(1131\right.$ V Peak) Basic, $400 \mathrm{~V}_{\text {rms }}\left(565 \mathrm{~V}_{\text {PEAK }}\right)$ reinforced.	
VDE	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12. File 2471900-4880-0001.	In accordance with VDE V 0884-10, each ADM2486 is proof tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}_{\text {PEAK }}$ for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$).

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 5.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration.
Minimum External Air Gap (Clearance)	L(101)	7.45 minimum	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	8.1 minimum	mm	Measured from input terminals to output terminals, shortest distance along body.
Minimum Internal Gap (Internal Clearance)		0.017 minimum	mm	Insulation distance through insulation.
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1.
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1).

VDE 0884-10 INSULATION CHARACTERISTICS

This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured by means of protective circuits.

An asterisk (*) on the physical package denotes VDE V 0884-10 approval for 560 V peak working voltage.
Table 6.

Description	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110 for Rated Mains Voltage $\begin{aligned} & \leq 150 \mathrm{~V} \text { rms } \\ & \leq 300 \mathrm{~V} \mathrm{rms} \\ & \leq 400 \mathrm{~V} \mathrm{rms} \end{aligned}$		$\begin{aligned} & \text { I-IV } \\ & \text { I-II } \\ & \text { I-II } \end{aligned}$	
Climatic Classification		40/100/21	
Pollution Degree (DIN VDE 0110, Table 1)		2	
Maximum Working Insulation Voltage	VIorm	560	$\mathrm{V}_{\text {PEAK }}$
Input-to-Output Test Voltage, Method b1 $V_{\text {IORM }} \times 1.875=V_{\text {PR, }} 100 \%$ Production Tested, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	$\mathrm{V}_{\text {Peak }}$
Input-to-Output Test Voltage, Method a After Environmental Tests, Subgroup 1 $V_{\text {IORM }} \times 1.6=V_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$ After Input and/or Safety Test, Subgroup 2/3 $\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\text {PR }}$	$\begin{aligned} & 896 \\ & 672 \end{aligned}$	Vpeak $V_{\text {PEAK }}$
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\mathrm{tr}}=10 \mathrm{sec}$) Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure, see Figure 21) Case Temperature Input Current Output Current	$\mathrm{V}_{\text {TR }}$ Ts $\mathrm{I}_{\mathrm{s}, \text { INPUT }}$ Is, output	$\begin{aligned} & 4000 \\ & 150 \\ & 265 \\ & 335 \end{aligned}$	$V_{\text {PEAK }}$ ${ }^{\circ} \mathrm{C}$ mA mA
Insulation Resistance at $\mathrm{T}_{5}, \mathrm{~V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. All voltages are relative to their respective ground.
Table 7.

Parameter	Rating
$V_{\text {DD1 }}$	-0.5 V to +7 V
$V_{\text {DD2 }}$	-0.5 V to +6 V
Digital Input Voltage (RTS, $\overline{\mathrm{RE}}, \mathrm{TxD}$)	-0.5 V to $\mathrm{V}_{\mathrm{DD} 1}+0.5 \mathrm{~V}$
Digital Output Voltage	
RxD	-0.5 V to $\mathrm{V}_{\mathrm{DD1}}+0.5 \mathrm{~V}$
DE	-0.5 V to $\mathrm{V}_{\mathrm{DD} 2}+0.5 \mathrm{~V}$
Driver Output/Receiver Input Voltage	-9 V to +14 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Average Output Current per Pin	-35 mA to +35 mA
$\theta_{\text {JA }}$ Thermal Impedance	$73^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature	
Soldering (10 sec)	$260^{\circ} \mathrm{C}$
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

${ }^{1}$ PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. EITHER OR BOTH MAY BE USED FOR GND. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED.
EITHER OR BOTH MAY BE USED FOR GND ${ }_{2}$.

Figure 2. Pin Configuration

Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD1	Power Supply (Logic Side), 3 V or 5 V Supply. Decoupling capacitor to GND_{1} required, capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$.
2,8	GND_{1}	Ground (Logic Side).
3	RxD	Receiver Output Data. This output is high when $(A-B)>200 \mathrm{mV}$ and low when $(A-B)<-200 \mathrm{mV}$. The output is three-stated when the receiver is disabled, that is, when $\overline{\mathrm{RE}}$ is driven high.
4	$\overline{\mathrm{RE}}$	Receiver Enable Input. This is an active-low input. Driving this input low enables the receiver, and driving it high disables the receiver.
5	RTS	Request to Send Input. Driving this input high enables the driver, and driving it low disables the driver.
6	TxD	Transmit Data Input. Data to be transmitted by the driver is applied to this input.
7	PV	Power_Valid. Used during power-up and power-down, needs to be tied high when the ADM2486 is operational, see the Applications Information section.
9,15	GND_{2}	Ground (Bus Side).
10	DE	Driver Enable Status Output. This output signals the driver enable or disable status to other devices on the bus. DE is high when the driver is enabled and low when the driver is disabled.
11, 14	NC	No Connect.
12	A	Noninverting Driver Output/Receiver Input. When the driver is disabled, or when $V_{D D 1}$ or $V_{D D 2}$ is powered down, Pin A is put into a high impedance state to avoid overloading the bus.
13	B	Inverting Driver Output/Receiver Input. When the driver is disabled, or when $\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ is powered down, Pin B is put into a high impedance state to avoid overloading the bus.
16	V ${ }_{\text {DD2 }}$	Power Supply (Bus Side), 5 V Isolated Supply. Decoupling capacitor to GND 2 required, capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$.

ADM2486

TEST CIRCUITS

Figure 3. Driver Voltage Measurement

Figure 4. Driver Voltage Measurement

Figure 5. Supply-Current Measurement Test Circuit

Figure 6. High Frequency Common-Mode Noise Test Circuit

Figure 7. Driver Propagation Delay

Figure 8. RTS-to-DE Propagation Delay

Figure 9. Driver Enable/Disable

Figure 10. Receiver Propagation Delay

Figure 11. Receiver Enable/Disable

SWITCHING CHARACTERISTICS

Figure 12. Driver Propagation Delay, Rise/Fall Timing

Figure 13. Receiver Propagation Delay

Figure 14. Driver Enable/Disable Timing

Figure 15. Receiver Enable/Disable Timing

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 16. Unloaded Supply Current vs. Temperature

Figure 17. Driver Propagation Delay vs. Temperature

Figure 18. Receiver Propagation Delay vs. Temperature

Figure 19. Driver/Receiver Propagation Delay, Low to High ($R_{L \text { Diff }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$)

Figure 20. Driver/Receiver Propagation Delay, High to Low $\left(R_{\text {LDiff }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}\right)$

Figure 21. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per VDE 0884

Figure 22. Output Current vs. Receiver Output High Voltage

Figure 23. Output Current vs. Receiver Output Low Voltage

Figure 24. Receiver Output High Voltage vs. Temperature $I_{R \times D}=-4 \mathrm{~mA}$

Figure 25. Receiver Output Low Voltage vs. Temperature $I_{R \times D}=-4 m A$

CIRCUIT DESCRIPTION

ELECTRICAL ISOLATION

In the ADM2486, electrical isolation is implemented on the logic side of the interface. Therefore, the part has two main sections: a digital isolation section and a transceiver section (see Figure 26). Driver input and request-to-send signals, applied to the TxD and RTS pins, respectively, and referenced to logic ground $\left(\mathrm{GND}_{1}\right)$, are coupled across an isolation barrier to appear at the transceiver section referenced to isolated ground $\left(\mathrm{GND}_{2}\right)$. Similarly, the receiver output, referenced to isolated ground in the transceiver section, is coupled across the isolation barrier to appear at the RxD pin referenced to logic ground.

iCoupler Technology

The digital signals are transmitted across the isolation barrier using iCoupler technology. This technique uses chip-scale transformer windings to couple the digital signals magnetically from one side of the barrier to the other. Digital inputs are encoded into waveforms that are capable of exciting the primary transformer winding. At the secondary winding, the induced waveforms are then decoded into the binary value that was originally transmitted.

Figure 26. ADM2486 Digital Isolation and Transceiver Sections

TRUTH TABLES

The truth tables in this section use these abbreviations:

Letter	Description
H	High level
I	Indeterminate
L	Low level
X	Irrelevant
Z	High impedance (off)
NC	Disconnected

Table 9. Transmitting

Supply Status		Inputs			Outputs 1		
V $_{\text {DD } 1}$	V $_{\text {DD } 2}$	RTS	TxD	A	B	DE	
On	On	H	H	H	L	H	
On	On	H	L	L	H	H	
On	On	L	X	Z	Z	L	
On	Off	X	X	Z	Z	L	
Off	On	X	X	Z	Z	L	
Off	Off	X	X	Z	Z	L	

${ }^{1}$ The PV pin is tied high.

Table 10. Receiving

Supply Status		Inputs		Output ${ }^{1}$
VDD1	VDD2	A-B (V)	$\overline{\mathrm{RE}}$	RxD
On	On	>0.2	L or NC	H
On	On	<-0.2	L or NC	L
On	On	$-0.2<$ A - <0.2	L or NC	I
On	On	Inputs open	L or NC	H
On	On	X	H	Z
On	Off	X	L or NC	H
Off	On	X	L or NC	H
Off	Off	X	L or NC	L

${ }^{1}$ The PV pin is tied high.

POWER-UP/POWER-DOWN THRESHOLDS

The power-up/power-down characteristics of the ADM2486 are in accordance with the supply thresholds shown in Table 11. Upon power-up, the ADM2486 output signals (A, B, RxD, and $\mathrm{DE})$ reach their correct state once both supplies have exceeded their thresholds. Upon power-down, the ADM2486 output signals retain their correct state until at least one of the supplies drops below its power-down threshold. When the $\mathrm{V}_{\text {DDI }}$ powerdown threshold is crossed, the ADM2486 output signals reach their unpowered states within $4 \mu \mathrm{~s}$.

Table 11. Power-Up/Power-Down Thresholds

Supply	Transition	Threshold (V)
$\mathrm{V}_{\mathrm{DD} 1}$	Power-up	2.0
$\mathrm{~V}_{\mathrm{DD} 1}$	Power-down	1.0
$\mathrm{~V}_{\mathrm{DD} 2}$	Power-up	3.3
$\mathrm{~V}_{\mathrm{DD} 2}$	Power-down	2.4

THERMAL SHUTDOWN

The ADM2486 contains thermal shutdown circuitry that protects the part from excessive power dissipation during fault conditions. Shorting the driver outputs to a low impedance source can result in high driver currents. The thermal sensing circuitry detects the increase in die temperature under this condition and disables the driver outputs. This circuitry is designed to disable the driver outputs when a die temperature of $150^{\circ} \mathrm{C}$ is reached. As the device cools, the drivers are re-enabled at a temperature of $140^{\circ} \mathrm{C}$.

RECEIVER FAIL-SAFE INPUTS

The receiver input includes a fail-safe feature that guarantees a logic high RxD output when the A and B inputs are floating or open-circuited.

MAGNETIC FIELD IMMUNITY

Because iCouplers use coreless technology, no magnetic components are present, and the problem of magnetic saturation of the core material does not exist. Therefore, i Couplers have essentially infinite dc field immunity. The following analysis defines the conditions under which this can occur. The ADM2486's 3 V operating condition is examined because it represents the most susceptible mode of operation.

The limitation on the iCoupler's ac magnetic field immunity is set by the condition in which the induced error voltage in the receiving coil (the bottom coil in this case) is made sufficiently large, either to falsely set or reset the decoder. The voltage induced across the bottom coil is given by

$$
V=\left(\frac{-d \beta}{d t}\right) \sum \pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where if the pulses at the transformer output are greater than 1.0 V in amplitude:
$\beta=$ magnetic flux density (gauss).
$N=$ number of turns in receiving coil.
$r_{n}=$ radius of nth turn in receiving coil (cm).
The decoder has a sensing threshold of about 0.5 V ; therefore, there is a 0.5 V margin in which induced voltages can be tolerated.

Given the geometry of the receiving coil and an imposed requirement that the induced voltage is, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 27.

Figure 27. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kGauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse and is the worst-case polarity, it reduces the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V . This is well above the 0.5 V sensing threshold of the decoder.

Figure 28 shows the magnetic flux density values in terms of more familiar quantities such as maximum allowable current flow at given distances away from the ADM2486 transformers.

Figure 28. Maximum Allowable Current for Various Current-to-ADM2486 Spacings

At combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

APPLICATIONS INFORMATION

PC BOARD LAYOUT

The ADM2486 isolated RS-485 transceiver requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 29). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $V_{D D 1}$ and between Pin 15 and Pin 16 for $\mathrm{V}_{\mathrm{DD} 2}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm . Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side is connected close to the package.

Figure 29. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the device's Absolute Maximum Ratings, thereby leading to latch-up or permanent damage.

POWER_VALID INPUT

To avoid chatter on the A and B outputs caused by slow powerup and power-down transients on $\mathrm{V}_{\text {DD1 }}(>100 \mu \mathrm{~s} / \mathrm{V})$, the device features a power_valid (PV) digital input. This pin should be driven low until $V_{\text {DDI }}$ exceeds 2.0 V . When $\mathrm{V}_{\mathrm{DDI}}$ is greater than 2.0 V , this pin should be driven high. Conversely, upon powerdown, PV should be driven low before $\mathrm{V}_{\mathrm{DD} 1}$ reaches 2.0 V (see Figure 30).

If the PV pin is driven with an open-drain output, the recommended value for the pull-up resistor is a $10 \mathrm{k} \Omega$ resistor, bypassed with a 100 pF capacitor to GND_{1} (see Figure 31).

The power_valid input can be driven, for example, by the output of a system reset circuit, such as the ADM809Z, which has a threshold voltage of 2.32 V .

Figure 31. Driving PV with an Open-Drain Output

ISOLATED POWER SUPPLY CIRCUIT

The ADM2486 requires isolated power capable of 5 V at up to approximately 75 mA (this current is dependent on the data rate and termination resistors used) to be supplied between the $\mathrm{V}_{\mathrm{DD} 2}$ and the GND_{2} pins.

A transformer driver circuit with a center-tapped transformer and LDO can be used to generate the isolated 5 V supply, as shown in Figure 32. The center-tapped transformer provides electrical isolation of the 5 V isolated power supply. The primary winding of the transformer is excited with a pair of square waveforms that are 180° out of phase with each other. A pair of Schottky diodes and a smoothing capacitor are used to create a rectified signal from the secondary winding. The ADP667 linear voltage regulator provides a regulated 5 V power supply to the ADM2486's bus-side circuitry ($\mathrm{V}_{\mathrm{DD} 2}$).

Figure 32. Isolated Power Supply Circuit

OUTLINE DIMENSIONS

Figure 33. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1	Data Rate (Mbps)	Temperature Range	Package Description	Ordering Quantity	Package Option
ADM2486BRW $^{\text {ADM }}$	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_W	47	RW-16
ADM2486BRW-REEL	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_W	1,000	RW-16
ADM2486BRWZ	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_W	47	RW-16
ADM2486BRWZ-REEL	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_W	1,000	RW- 16
EVAL-ADM2486EBZ			ADM2486 Evaluation Board		

${ }^{1} Z=$ RoHS Compliant Part.

Data Sheet	ADM2486
NOTES	

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB I2C-CPEV/NOPB ISO35TEVM-434
XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB\# MAX9286COAXEVKIT\# MAX3100EVKIT MAX13235EEVKIT MAX14970EVKIT\# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT\# MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB\# MAX13035EEVKIT+ DC1794A SN65HVS885EVM EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL MAX16972AGEEVKIT\# MARS1-DEMO3-ADAPTER-GEVB PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177\# EVALADN4654EBZ MAX9275COAXEVKIT\# MAX2202XEVKIT\# MAX13171EEVKIT+ MAX7322EVKIT+ MAX9281COAXEVKIT\# MAX96715COAXEVKIT\# ZSSC3240KIT

