FEATURES

Isolated, full-duplex RS-485/RS-422 transceiver $\pm 8 \mathrm{kV}$ ESD protection on RS-485 input/output pins
16 Mbps data rate
Complies with ANSI TIA/EIA-485-A-1998 and ISO 8482: 1987(E)
Suitable for 5 V or 3 V operation (VDD $)$
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{k V} / \mu \mathrm{s}$
Receiver has open-circuit, fail-safe design
32 nodes on the bus
Thermal shutdown protection
Safety and regulatory approvals
UL recognition: $\mathbf{5 0 0 0} \mathbf{V ~ r m s ~ i s o l a t i o n ~ v o l t a g e ~}$
for 1 minute per UL 1577
VDE certificate of conformity
DIN EN 60747-5-2 (VDE 0884-10 Part 2): 2003-01
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000
$V_{\text {IORM }}=848 \mathrm{~V}$ peak
Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Wide body, 16-lead SOIC package

APPLICATIONS

Isolated RS-485/RS-422 interfaces
Industrial field networks
INTERBUS
Multipoint data transmission systems

GENERAL DESCRIPTION

The ADM2490E is an isolated data transceiver with $\pm 8 \mathrm{kV}$ ESD protection that is suitable for high speed, full-duplex communication on multipoint transmission lines. It is designed for balanced transmission lines and complies with ANSI TIA/EIA-485-A-1998 and ISO 8482: 1987(E). The device employs Analog Devices, Inc., i Coupler ${ }^{\bullet}$ technology to combine a 2 -channel isolator, a threestate differential line driver, and a differential input receiver into a single package.
The differential transmitter outputs and receiver inputs feature electrostatic discharge circuitry that provides protection to $\pm 8 \mathrm{kV}$

Figure 1.

Rev. A

ADM2490E

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Timing Specifications 4
Package Characteristics 4
Regulatory Information 5
Insulation and Safety-Related Specifications 5
VDE 0884-10 Insulation Characteristics. 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Test Circuits 8
REVISION HISTORY
8/08-Rev. 0 to Rev. A
Changes to Regulatory Approval Status Throughout 1
Changed VDE 0884 to VDE 0884-10 Throughout 1
Changes to Table 5 5
Changes to Table 8 6
Changes to Figure 9 9
Changes to iCoupler Technology Section 12
Changes to Magnetic Field Immunity Section 13
Changes to Isolated Power Supply Circuit Section 14
Changes to Figure 25 14
Added Typical Applications Section 15
Updated Outline Dimensions 16
Changes to Ordering Guide 16
Switching Characteristics 9
Typical Performance Characteristics 10
Circuit Description 12
Electrical Isolation 12
Truth Tables. 12
Thermal Shutdown 13
Fail-Safe Receiver Inputs 13
Magnetic Field Immunity. 13
Applications Information 14
Isolated Power Supply Circuit 14
PCB Layout 14
Typical Applications 15
Outline Dimensions 16
Ordering Guide 16

SPECIFICATIONS

All voltages are relative to their respective ground; $2.7 \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$, unless otherwise noted.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
SUPPLY CURRENT							
Power Supply Current, Logic Side							
TxD/RxD Data Rate < 2 Mbps	IDD1			3.0	mA	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}$, unloaded	
TxD/RxD Data Rate $=16 \mathrm{Mbps}$	IDD1			6	mA	100Ω load between Y and Z	
Power Supply Current, Bus Side							
TxD/RxD Data Rate < 2 Mbps	$\mathrm{I}_{\text {DD2 }}$			4.0	mA	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}$, unloaded	
TxD/RxD Data Rate $=16 \mathrm{Mbps}$	IDD2			60	mA	100Ω load between Y and Z	
DRIVER							
Differential Outputs							
Differential Output Voltage, Loaded	\| $\mathrm{VOD}_{\text {2 }}$ \|	2.0		5.0	V	$\mathrm{R}_{L}=50 \Omega$ (RS-422), see Figure 3	
		1.5		5.0	V	$\mathrm{R}_{\mathrm{L}}=27 \Omega$ (RS-485), see Figure 3	
	\|Vod4		1.5		5.0	V	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {TEST } 1} \leq+12 \mathrm{~V}$, see Figure 4
$\Delta\left\|V_{\text {ool }}\right\|$ for Complementary Output States	$\Delta\left\|V_{\text {ob }}\right\|$			0.2	V	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, see Figure 3	
Common-Mode Output Voltage	Voc			3.0	V	$\mathrm{RL}=54 \Omega$ or 100Ω, see Figure 3	
$\Delta \mid$ oc \mid for Complementary Output States	$\Delta\|\mathrm{Voc}\|$			0.2	V	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, see Figure 3	
Short-Circuit Output Current	los			200	mA		
Logic Inputs							
Input Threshold Low	VIL	$0.25 \times \mathrm{V}_{\mathrm{DD} 1}$			V		
Input Threshold High	V_{IH}			$0.7 \times \mathrm{V}_{\text {DD } 1}$	V		
TxD Input Current	$\mathrm{I}_{\text {TXD }}$	-10	+0.01	+10	$\mu \mathrm{A}$		
RECEIVER							
Differential Inputs							
Differential Input Threshold Voltage	$\mathrm{V}_{\text {TH }}$	-0.2		+0.2	V		
Input Voltage Hysteresis	$\mathrm{V}_{\text {HYS }}$		70		mV	V Oc $=0 \mathrm{~V}$	
Input Current (A, B)	1			1.0	mA	V oc $=12 \mathrm{~V}$	
		-0.8			mA	V oc $=-7 \mathrm{~V}$	
Line Input Resistance	RIN	12			$\mathrm{k} \Omega$		
Logic Outputs							
Output Voltage Low	Volrx		0.2	0.4	V	$\mathrm{lorxx}=1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=-0.2 \mathrm{~V}$	
Output Voltage High	VohrxD	$V_{D D 1}-0.3$	$\mathrm{V}_{\mathrm{DD} 1}-0.2$		V	$\mathrm{l}_{\mathrm{ORxD}}=-1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=0.2 \mathrm{~V}$	
Short-Circuit Current				100	mA		
COMMON-MODE TRANSIENT IMMUNITY ${ }^{1}$		25			kV/ $\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=1 \mathrm{kV}$, transient magnitude $=800 \mathrm{~V}$	

[^0]
ADM2490E

TIMING SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DRIVER						
Maximum Data Rate		16			Mbps	
Propagation Delay	$\mathrm{tpLh}^{\text {t }}$ tpl		45	60	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$ see Figure 6 and Figure 8
Pulse Width Distortion, $\text { PWD }=\left\|t_{\text {tyLL }}-\mathrm{t}_{\text {PYHL }}\right\|, \mathrm{PWD}=\left\|\mathrm{t}_{\text {PZLH }}-\mathrm{t}_{\text {PZHL }}\right\|$	tpwo, tpwo			7	ns	$\mathrm{RL}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figure 6 and Figure 8
Single-Ended Output Rise/Fall Times	$\mathrm{t}_{\mathrm{k}}, \mathrm{t}_{\mathrm{F}}$			20	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figure 6 and Figure 8
RECEIVER						
Propagation Delay	tplh, $\mathrm{t}_{\text {PhL }}$			60	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, see Figure 7 and Figure 9
Pulse Width Distortion, PWD $=\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$	tpwd			10	ns	$C_{L}=15 \mathrm{pF}$, see Figure 7 and Figure 9

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DRIVER						
Maximum Data Rate		10			Mbps	
Propagation Delay	$t_{\text {PYLH, }} \mathrm{t}_{\text {PYHL }}$ tpzlh, $^{\text {tpZHL }}$		45	60	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figure 6 and Figure 8
Pulse Width Distortion, $\text { PWD }=\mid \mathrm{t}_{\text {PYLH }}-\mathrm{t}_{\text {PYHL }}, \text { PWD }=\left\|\mathrm{t}_{\text {PZLH }}-\mathrm{t}_{\text {PZHL }}\right\|$	tpwo, tpwd			9	ns	$\mathrm{RL}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figure 6 and Figure 8
Single-Ended Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$			27	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figure 6 and Figure 8
RECEIVER						
Propagation Delay	tpLh, $\mathrm{tphL}^{\text {l }}$			60	ns	$C_{L}=15 \mathrm{pF}$, see Figure 7 and Figure 9
Pulse Width Distortion, PWD $=\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHLL }}\right\|$	$\mathrm{t}_{\text {PWD }}$			10	ns	$C_{L}=15 \mathrm{pF}$, see Figure 7 and Figure 9

PACKAGE CHARACTERISTICS

Table 4.

Parameter
Resistance (Input to Output) ${ }^{1}$
Capacitance (Input to Output) ${ }^{1}$
Input Capacitance ${ }^{2}$

REGULATORY INFORMATION

Table 5. ADM2490E Approvals

Organization	Approval Type	Notes
UL	Recognized under the Component Recognition Program of Underwriters Laboratories, Inc.	In accordance with UL 1577, each ADM2490E is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}$ rms for 1 second (current leakage detection limit $=10 \mu \mathrm{~A}$).
	Certified according to DIN EN 60747-5-2	In accordance with DIN EN 60747-5-2, each ADM2490E is proof VDE
	tested by applying an insulation test voltage ≥ 1590 V peak for (VDE 0884-10 Part 2): 2003-01, DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000 1 second (partial discharge detection limit =5 pC).	

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage	L(I01)	5000	V rms	1 minute duration
Minimum External Air Gap (Clearance)	L(I02)	8.45	mm min	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)		0.017	mm min	Measured from input terminals to output terminals, shortest distance along body
Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Isolation Group	CTI	Insulation distance through insulation		

VDE 0884-10 INSULATION CHARACTERISTICS

This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured by means of protective circuits.
An asterisk (*) on a package denotes VDE 0884-10 approval for 848 V peak working voltage.
Table 7.

Description	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110 for Rated Mains Voltage			
$\leq 300 \mathrm{~V}$ rms		I to IV	
$\leq 450 \mathrm{~V}$ rms		I to II	
$\leq 600 \mathrm{~V}$ rms		I to II	
Climatic Classification		40/105/21	
Pollution Degree (DIN VDE 0110, see Table 1)		2	
Maximum Working Insulation Voltage	VIorm	848	V peak
Input-to-Output Test Voltage, Method b1	$V_{\text {PR }}$	1590	V peak
$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR, }}, 100 \%$ Production Tested, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$			
Input-to-Output Test Voltage, Method a			
After Environmental Tests, Subgroup 1			
$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$		1357	V peak
After Input and/or Safety Test, Subgroup 2/3			
$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1018	\checkmark peak
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\mathrm{TR}}=10 \mathrm{sec}$)	$V_{\text {TR }}$	6000	V peak
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure; see Figure 16)			
Case Temperature	Ts	150	${ }^{\circ} \mathrm{C}$
Input Current	Is, INPUT	265	mA
Output Current	$\mathrm{IS}_{\text {, output }}$	335	mA
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

ADM2490E

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Each voltage is relative to its respective ground.

Table 8.

Parameter	Rating
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DD} 1}$	-0.5 V to +7 V
$\mathrm{~V}_{\mathrm{DD} 2}$	-0.5 V to +6 V
Logic Input Voltages	-0.5 V to $\mathrm{VDD} 1+0.5 \mathrm{~V}$
Bus Terminal Voltages	-9 V to +14 V
Logic Output Voltages	-0.5 V to V DD +0.5 V
Average Output Current, per Pin	$\pm 35 \mathrm{~mA}$
ESD (Human Body Model)	$\pm 8 \mathrm{kV}$
\quad on $\mathrm{A}, \mathrm{B}, \mathrm{Y}$, and Z Pins	
$\theta_{\text {JA }}$ Thermal Impedance	$60^{\circ} \mathrm{C} / \mathrm{W}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute maximum ratings apply individually only, not in combination.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Power Supply (Logic Side). Decoupling capacitor to GND 1 required; capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$.
2,5,8	GND_{1}	Ground (Logic Side).
3	RxD	Receiver Output.
4,7,12	NC	No Connect. These pins must be left floating.
6	TxD	Transmit Data.
9, 15	GND_{2}	Ground (Bus Side).
10	Y	Driver Noninverting Output.
11	Z	Driver Inverting Output.
13	B	Receiver Inverting Input.
14	A	Receiver Noninverting Input.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Power Supply (Bus Side). Decoupling capacitor to GND_{2} required; capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$.

ADM2490E

TEST CIRCUITS

Figure 3. Driver Voltage Measurement

Figure 4. Driver Voltage Measurement

Figure 7. Receiver Propagation Delay

Figure 5. Supply-Current Measurement Test Circuit (See Figure 10 and Figure 11)

SWITCHING CHARACTERISTICS

Figure 9. Receiver Propagation Delay

ADM2490E

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 10. I DD1 Supply Current vs. Temperature (See Figure 5)

Figure 11. IDD2 Supply Current vs. Temperature (See Figure 5)

Figure 12. Driver Propagation Delay vs. Temperature

Figure 13. Receiver Propagation Delay vs. Temperature

Figure 14. Driver/Receiver Propagation Delay, Low to High ($R_{\text {LDIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$)

Figure 15. Driver/Receiver Propagation Delay, High to Low ($R_{\text {LDIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$)

Figure 16. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per VDE 0884-10

Figure 17. Output Current vs. Receiver Output High Voltage

Figure 19. Receiver Output High Voltage vs. Temperature, $I_{R \times D}=-4 m A$

Figure 20. Receiver Output Low Voltage vs. Temperature, $I_{\text {RXD }}=-4 \mathrm{~mA}$

Figure 18. Output Current vs. Receiver Output Low Voltage

ADM2490E

CIRCUIT DESCRIPTION

ELECTRICAL ISOLATION

In the ADM2490E, electrical isolation is implemented on the logic side of the interface. Therefore, the part has two main sections: a digital isolation section and a transceiver section (see Figure 21). The driver input signal, which is applied to the TxD pin and referenced to logic ground (GND_{1}), is coupled across an isolation barrier to appear at the transceiver section referenced to isolated ground $\left(\mathrm{GND}_{2}\right)$. Similarly, the receiver input, which is referenced to isolated ground in the transceiver section, is coupled across the isolation barrier to appear at the RxD pin referenced to logic ground.

iCoupler Technology

The digital signals transmit across the isolation barrier using i Coupler technology. This technique uses chip scale transformer windings to couple the digital signals magnetically from one side of the barrier to the other. Digital inputs are encoded into waveforms that are capable of exciting the primary transformer winding. At the secondary winding, the induced waveforms are decoded into the binary value that was originally transmitted.

Positive and negative logic transitions at the input cause narrow pulses ($\sim 1 \mathrm{~ns}$) to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $\sim 1 \mu \mathrm{~s}$, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than about $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case the output is forced to a default state (see Table 12).

TRUTH TABLES

The truth tables in this section use the abbreviations shown in Table 10.

Table 10. Truth Table Abbreviations

Abbreviation	Description
H	High level
I	Indeterminate
L	Low level
X	Irrelevant

Table 11. Transmitting

Supply Status		Input	Outputs	
V DD1 $^{\text {On }}$	VD2	TxD	Y	Z
On	On	H	H	L
On	On	L	L	H

Table 12. Receiving

Supply Status		Inputs	Output
$\mathbf{V}_{\text {DD } 1}$	$\mathbf{V}_{\mathrm{DD} 2}$	$\mathbf{A - B}(\mathbf{V})$	RxD
On	On	>0.2	H
On	On	<-0.2	L
On	On	$-0.2<\mathrm{A}-\mathrm{B}<+0.2$	I
On	On	Inputs open	H
On	Off	X	H
Off	On	X	H
Off	Off	X	L

Figure 21. ADM2490E Digital Isolation and Transceiver Sections

THERMAL SHUTDOWN

The ADM2490E contains thermal-shutdown circuitry that protects the part from excessive power dissipation during fault conditions. Shorting the driver outputs to a low impedance source can result in high driver currents. The thermal sensing circuitry detects the increase in die temperature under this condition and disables the driver outputs. This circuitry is designed to disable the driver outputs when a die temperature of $150^{\circ} \mathrm{C}$ is reached. As the device cools, the drivers are re-enabled at a temperature of $140^{\circ} \mathrm{C}$.

FAIL-SAFE RECEIVER INPUTS

The receiver inputs include a fail-safe feature that guarantees a logic high on the RxD pin when the A and B inputs are floating or open-circuited.

MAGNETIC FIELD IMMUNITY

The limitation on the magnetic field immunity of the iCoupler is set by the condition in which an induced voltage in the receiving coil of the transformer is large enough to either falsely set or reset the decoder. The following analysis defines the conditions under which this may occur. The 3 V operating condition of the ADM2490E is examined because it represents the most susceptible mode of operation.
The pulses at the transformer output have an amplitude greater than 1 V . The decoder has a sensing threshold of about 0.5 V , thus establishing a 0.5 V margin in which induced voltages can be tolerated.
The voltage induced across the receiving coil is given by

$$
V=\left(\frac{-d \beta}{d t}\right) \sum \pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where:
β is the magnetic flux density (gauss).
N is the number of turns in the receiving coil. r_{n} is the radius of the $\mathrm{n}^{\text {th }}$ turn in the receiving coil (cm).
Given the geometry of the receiving coil and an imposed requirement that the induced voltage is, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field can be determined using Figure 22.

Figure 22. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse and is the worst-case polarity, it reduces the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , still well above the 0.5 V sensing threshold of the decoder.
Figure 23 shows the magnetic flux density values in terms of more familiar quantities, such as maximum allowable current flow at given distances away from the ADM2490E transformers.

Figure 23. Maximum Allowable Current for Various Current-to-ADM2490E Spacings
With combinations of strong magnetic field and high frequency, any loops formed by PCB traces can induce error voltages large enough to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

ADM2490E

APPLICATIONS INFORMATION

ISOLATED POWER SUPPLY CIRCUIT

The ADM2490E requires isolated power capable of 5 V at up to approximately 65 mA (this current is dependent on the data rate and termination resistors used) to be supplied between the $\mathrm{V}_{\mathrm{DD} 2}$ and the GND_{2} pins. A transformer driver circuit with a center-tapped transformer and LDO can be used to generate the isolated 5 V supply, as shown in Figure 25. The center-tapped transformer provides electrical isolation of the 5 V power supply. The primary winding of the transformer is excited with a pair of square waveforms that are 180° out of phase with each other. A pair of Schottky diodes and a smoothing capacitor are used to create a rectified signal from the secondary winding. The ADP3330 linear voltage regulator provides a regulated power supply to the bus-side circuitry ($\mathrm{V}_{\mathrm{DD} 2}$) of the ADM2490E.

PCB LAYOUT

The ADM2490E isolated RS-485 transceiver requires no external interface circuitry for the logic interfaces. Power supply bypassing is required at the input and output supply pins (see Figure 24). Bypass capacitors are conveniently connected between Pin 1 and Pin 2 for $V_{D D 1}$ and between Pin 15 and Pin 16 for $V_{D D 2}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total
lead length between both ends of the capacitor and the input power-supply pin should not exceed 20 mm . Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side is connected close to the package.

Figure 24. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the absolute maximum ratings of the device, thereby leading to latch-up or permanent damage.

Figure 25. Isolated Power-Supply Circuit

ADM2490E

TYPICAL APPLICATIONS

The ADM2490E transceiver is designed for point-to-point transmission lines. Figure 26 shows a full-duplex point-to-point application. To minimize reflections, terminate the line at the receiver end with a termination resistor. The value of the termination resistor should be equal to the characteristic impedance of the cable.

Figure 26. Full-Duplex Point-to-Point Application

ADM2490E

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 27. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADM2490EBRWZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16 -Lead Standard Small Outline Package [SOIC_W]	RW-16
ADM2490EBRWZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$16-$ Lead Standard Small Outline Package [SOIC_W]	RW-16

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB I2C-CPEV/NOPB ISO35TEVM-434 416100120-3
XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB\# MAX9286COAXEVKIT\# MAX3100EVKIT MAX13235EEVKIT MAX14970EVKIT\# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT\# MAXCAM705OV635AAA\# MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB\# MAX13035EEVKIT+ DC1794A SN65HVS885EVM EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL MAX16972AGEEVKIT\# MARS1-DEMO3-ADAPTER-GEVB MAX7315EVKIT+ PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177\# EVAL-ADN4654EBZ MAX9275COAXEVKIT\# MAX2202XEVKIT\# $\underline{\text { MAX13171EEVKIT }+~ M A X 7322 E V K I T+~}$

[^0]: ${ }^{1} \mathrm{CM}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. V_{CM} is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common-mode is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^1]: ${ }^{1} Z=$ RoHS Compliant Part.

