

EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z User Guide

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Evaluating the ADN4651/ADN4652 5 kV RMS, 600 Mbps LVDS Isolator (SOIC_W)

FEATURES

Isolated ground planes (logic side and bus side)
Convenient connections through SMA terminals

3.3 V or 2.5 V power on Side 1 (V_{IN1}/V_{DD1}) and Side 2 (V_{IN2}/V_{DD2})

Ground on Side 1 (GND $_1$) and Side 2 (GND $_2$)

LVDS input signals: D_{IN1+}, D_{IN1-}, D_{IN2+}, D_{IN2-}

LVDS output signals: $D_{\text{OUT1+}}$, $D_{\text{OUT1-}}$, $D_{\text{OUT2+}}$, $D_{\text{OUT2-}}$

Jumper-selectable supply power of 3.3 V or 2.5 V
Termination resistors on all LVDS drivers/receivers

EVALUATION KIT CONTENTS

EVAL-ADN4651EB1Z or EVAL-ADN4652EB1Z evaluation board

DOCUMENTS NEEDED

ADN4650/ADN4651/ADN4652 data sheet

EQUIPMENT NEEDED

Signal generator Oscilloscope

GENERAL DESCRIPTION

The EVAL-ADN4651EB1Z and EVAL-ADN4652EB1Z allow quick and easy evaluation of the ADN4651/ADN4652 low-voltage differential signalling (LVDS) isolator without the need for external components. The ADN4651/ADN4652 employ Analog Devices, Inc., *i*Coupler* technology to combine a 2-channel isolator with an LVDS receiver and driver into a single, 20-lead wide body SOIC package. They are capable of running at data rates of up to 600 Mbps with very low jitter.

The evaluation board has separate ground and power planes for each side of the isolator. This separation enables the evaluation of the ADN4651/ADN4652 with galvanic isolation between both sides of the device. Jumper-selectable power supplies at 3.3 V or 2.5 V are required on each side of the ADN4651/ADN4652. Using an on-chip LDO, 2.5 V can be provided from an external 3.3 V power supply.

Complete information about the ADN4651/ADN4652 is available in the ADN4650/ADN4651/ADN4652 data sheet, which should be consulted in conjunction with this user guide when using the evaluation boards.

UG-900

EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z User Guide

TABLE OF CONTENTS

reatures	. 1
Evaluation Kit Contents	. 1
Documents Needed	. 1
Equipment Needed	. 1
General Description	
Revision History	
ADN4651 and ADN4652 Evaluation Board Photographs	
Evaluation Board Configuration	
0	

Setting Up the Evaluation Board
Radiated Emissions Test Results (EN 55022)
Evaluation Board Schematic and Artwork
Ordering Information
Bill of Materials1
Related Links1

REVISION HISTORY

5/16—Rev. 0 to Rev. A	
Added the EVAL-ADN4652EB1Z and ADN4652	.Universal
Changes to Documents Needed Section	1
Added Figure 2; Renumbered Sequentially	2
Changes to Setting Up the Evaluation Board Section	3
Changes to Figure 5 Caption, Table 2, and Table 3	4
Changes to Figure 6 Caption and Radiated Emissions	
Test Results (EN 55022) Section	6
Added Figure 11 and Figure 12	8
Added Table 6; Renumbered Sequentially	12
Changes to Related Link Section	12

12/15—Revision 0: Initial Version

EVALUATION BOARD PHOTOGRAPHS

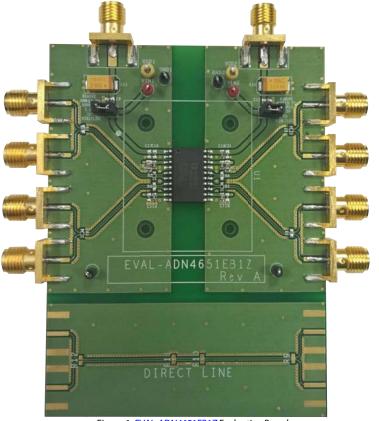


Figure 1. EVAL-ADN4651EB1Z Evaluation Board

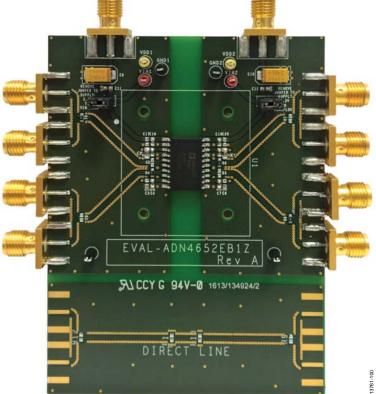


Figure 2. EVAL-ADN4652EB1Z Evaluation Board

EVALUATION BOARD CONFIGURATION SETTING UP THE EVALUATION BOARD

On the EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z, power supplies are configured using Jumpers P4 and P7 (see Table 1) and connected to the J9 and J10 SMA connectors (see Table 2 and Table 3). A 3.3 V power supply can be applied to Side 1 and/or Side 2 of the ADN4651/ADN4652 by removing Jumpers P4 (Side 1) and P7 (Side 2). If a 2.5 V supply is connected to the board, the relevant jumper must be inserted (P4 for Side 1 and P7 for Side 2). At 300 MHz with a load resistance of 100 Ω , the maximum operating current from each power supply is 90 mA.

When using a 3.3 V power supply, $V_{\rm IN1}$ and $V_{\rm DD1}$ (Pin 1 and Pin 3 on the ADN4651/ADN4652) are bypassed to GND₁ using 1 μ F capacitors. $V_{\rm IN2}$ and $V_{\rm DD2}$ (Pin 20 and Pin 18 on the ADN4651/ADN4652) are bypassed to GND₂ using 1 μ F capacitors. When using a 2.5 V power supply, $V_{\rm IN1}$ or $V_{\rm IN2}$ is connected directly to $V_{\rm DD1}$ or $V_{\rm DD2}$ by shorting Jumpers P4 or P7, respectively. Both $V_{\rm DD1}$ pins are also bypassed to GND₁ with 0.1 μ F capacitors. Both $V_{\rm DD2}$ pins are also bypassed to GND₂ with 0.1 μ F capacitors.

An example operation of the EVAL-ADN4651EB1Z is shown in Figure 5 (signal generator and oscilloscope connections are reversed for EVAL-ADN4652EB1Z, per Table 2 and Table 3). SMA connectors expose all LVDS inputs and outputs for the EVAL-ADN4651EB1Z, but are reversed for the EVAL-ADN4651EB1Z, but are reversed for the EVAL-ADN4652EB1Z (see Table 2 and Table 3). Connect a signal generator to the board using the J1 and J2 connectors and set up a 300 MHz square wave clock with an amplitude of 350 mV and an offset of 1.2 V. Connect the oscilloscope directly to the J5 and J6 connectors to perform timing measurements including propagation delay and skew. Precision measurements, for example, jitter, using a differential probe requires attaching the probe at the R7 or R3 resistors and potentially cutting the traces to the connectors to minimize reflections.

A plot of the oscilloscope connected via the J5 and J6 connectors is shown in Figure 3. Channel 3 (green) and Channel 4 (purple) show the J5 and J6 connectors separately (single-ended) with the differential signal (orange).

Operation of the second isolated LVDS channel is shown in Figure 4. In contrast to Figure 5, the oscilloscope now connects via the J3 and J4 connectors and the signal generator connects to the J7 and J8 connectors. Channel 3 (green) and Channel 4 (purple) show the J3 and J4 connectors separately (single-ended) with the differential signal (orange).

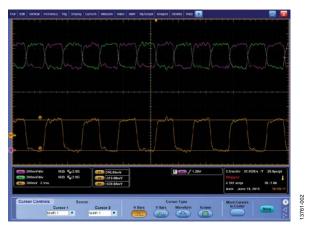


Figure 3. Dout1- and Dout1+ with a 300 MHz Clock, Single-Ended and Differential

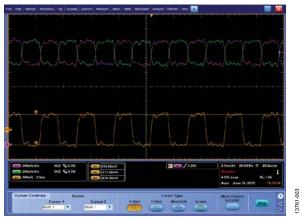
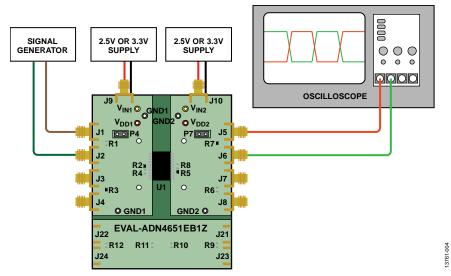



Figure 4. Dout2- and Dout2+ with a 300 MHz Clock, Single-Ended and Differential

 $Figure \ 5. \ Basic \ LVDS \ Isolator \ Evaluation \ Board \ Operation \ for \ the \ EVAL-ADN4651EB1Z; Scope \ and \ Signal \ Generator \ Reversed \ for \ the \ EVAL-ADN4652EB1Z \ and \ Signal \ Generator \ Reversed \ for \ the \ EVAL-ADN4652EB1Z \ and \ Signal \ Generator \ Reversed \ for \ the \ EVAL-ADN4652EB1Z \ and \ Signal \ Generator \ Reversed \ for \ the \ EVAL-ADN4652EB1Z \ and \ Signal \ Generator \ Reversed \ for \ the \ EVAL-ADN4652EB1Z \ and \ Signal \ Generator \ Reversed \ for \ Signal \ Generator \ Reversed \ for \ Signal \ Generator \ Reversed \ for \ Signal \ Generator \ Generat$

Table 1. Jumper Configuration

Jumper	Position	Description	
P4	Open	3.3 V power supply connected to Connector J9 for V _{IN1}	
	Closed	2.5 V power supply connected to Connector J9, V _{IN1} shorted to V _{DD1}	
P7	Open	3.3 V power supply connected to Connector J9 for V _{IN2}	
	Closed	2.5 V power supply connected to Connector J9, V _{IN2} shorted to V _{DD2}	

Table 2. Side 1 Connector Descriptions

EVAL-ADN4651EB1Z Connector	EVAL-ADN4652EB1Z Connector	Description
J9	J9	Power supply, 3.3 V (Jumper P4 open) or 2.5 V (Jumper P4 closed)
J1	J3	D _{IN1+} , noninverted LVDS input for Channel 1
J2	J4	D _{IN1} -, inverted LVDS input for Channel 1
J3	J1	D _{OUT2+} , noninverted LVDS output for Channel 2
J4	J2	D _{OUT2-} , inverted LVDS output for Channel 2
J22	J22	Connects to Connector J21 (test trace for calibration)
J24	J24	Connects to Connector J23 (test trace for calibration)

Table 3. Side 2 Connector Descriptions

EVAL-ADN4651EB1Z Connector	EVAL-ADN4652EB1Z Connector	Description
J10	J10	Power supply, 3.3 V (Jumper P7 open) or 2.5 V (Jumper P7 closed)
J5	J7	Dout1+, noninverted LVDS output for Channel 1
J6	J8	D _{OUT1} -, inverted LVDS output for Channel 1
J7	J5	D _{IN2+} , noninverted LVDS input for Channel 2
J8	J6	D _{IN2} -, inverted LVDS input for Channel 2
J21	J21	Connects to Connector J22 (test trace for calibration)
J23	J23	Connects to Connector J24 (test trace for calibration)

RADIATED EMISSIONS TEST RESULTS (EN 55022)

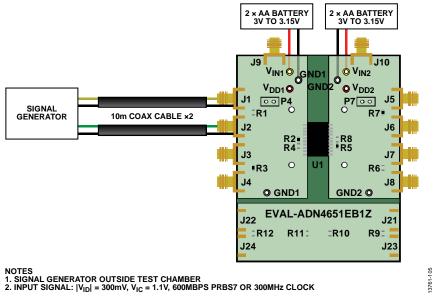


Figure 6. Test Setup for EN 55022 Radiated Emissions Testing for the EVAL-ADN4651EB1Z; Scope and Signal Generator Reversed for the EVAL-ADN4652EB1Z

Radiated emissions testing is performed with the EVAL-ADN4651EB1Z and EVAL-ADN4652EB1Z at an independent external test facility. Evaluating the EVAL-ADN4651EB1Z and EVAL-ADN4652EB1Z to the EN 55022 standard is undertaken in a 10 m radiated emissions test chamber, using the test setup shown in Figure 6. The setup comprises a battery-powered EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z connected to a signal generator located outside the chamber via coax cables. As specified by the EN 55022 standard, both horizontal and vertical peak scans are undertaken with any visible emissions peaks investigated using quasi-peak detector measurement. For each frequency measured using a quasi-peak detector, the unit under test rotates through 360 degrees to find the worst case angle. The receiving antenna then elevates from 1 m to 4 m in height to find the worst case elevation. The worst case quasi-peak measurements are compared to the EN 55022 Class B and Class A limits.

The test results for EVAL-ADN4651EB1Z and EVAL-ADN4652EB1Z are shown in Table 4 and a classification report for both evaluation boards is available on request (please contact Analog Devices or the distributor for support). Radiated emissions are measured across 30 MHz to 1 GHz and from 1 GHz to 3 GHz.

With a 600 Mbps PRBS7 input, the EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z passes the EN 55022 Class B limits. Plots for horizontal and vertical peak radiated emissions below 1 GHz are shown in Figure 7 and Figure 8, respectively, for the EVAL-ADN4651EB1Z; see the classification report for the EVAL-ADN4652EB1Z plots.

With a 300 MHz clock input, the EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z passes the EN 55022 Class A limits. To pass the Class B limits when isolating high frequency clocks, reduce the printed circuit board (PCB) clearance from the 8 mm implemented on the EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z to, for example, 2 mm.

Table 4. EN 55022 Radiated Emissions Classification

Test Condition	Result
600 Mbps PRBS	Passes EN 55022 Class B
300 MHz Clock	Passes EN 55022 Class A

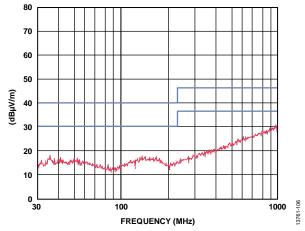
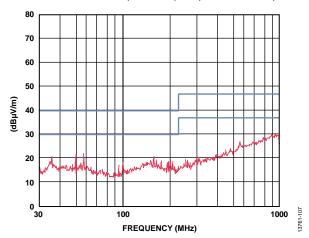



Figure 7. EVAL-ADN4651EB1Z Radiated Emissions (Horizontal, Peak, 30 MHz to 1 GHz) with 600 Mbps PRBS7 Input

Figure~8.~EVAL-ADN4651EB1Z~Radiated~Emissions~(Vertical, Peak, 30~MHz~to~1~GHz)~with~600~Mbps~PRBS7~Input

EVALUATION BOARD SCHEMATIC AND ARTWORK

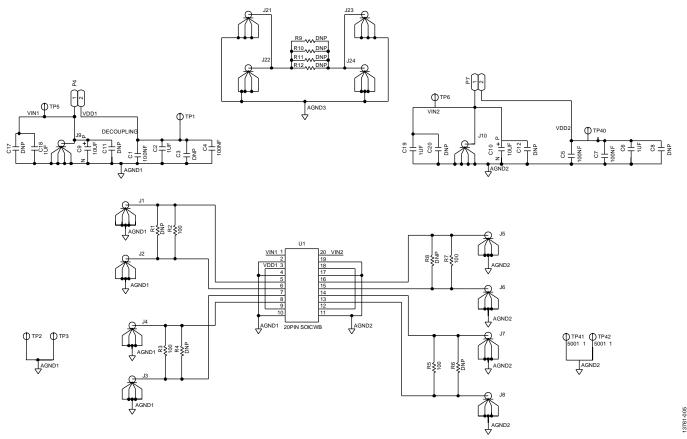
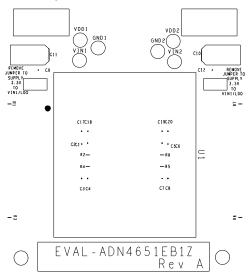



Figure 9. EVAL-ADN4651EB1Z Schematic

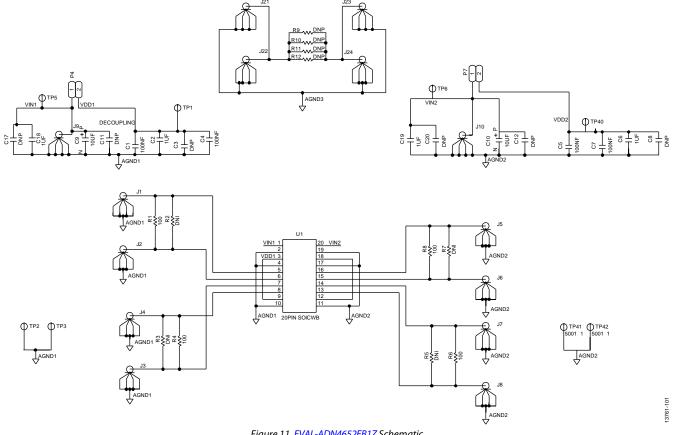
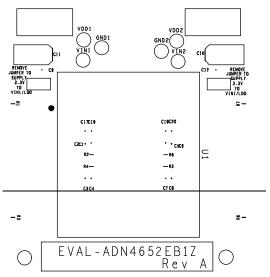



Figure 11. EVAL-ADN4652EB1Z Schematic

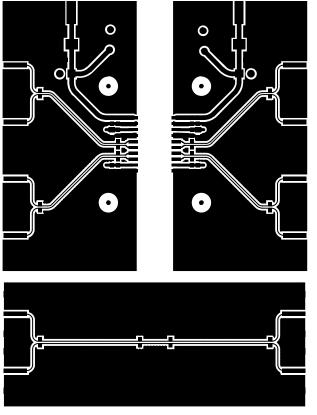


Figure 13. EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z Component Side

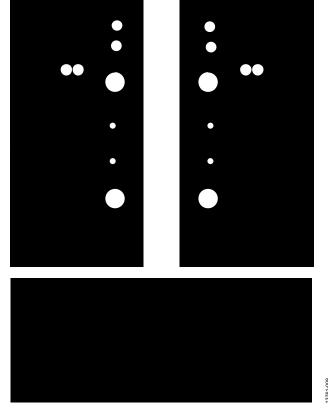


Figure 14. EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z Inner Layer 2, Ground

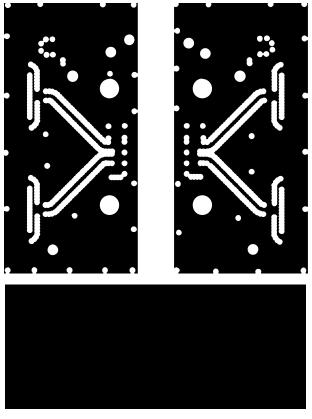


Figure 15. EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z Inner Layer 3, Power

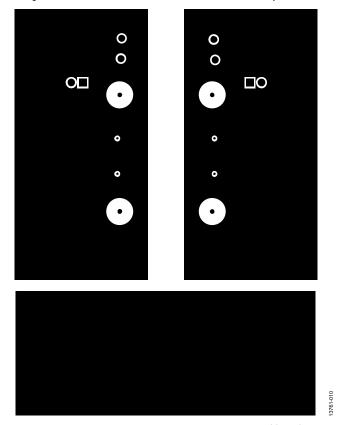


Figure 16. EVAL-ADN4651EB1Z/EVAL-ADN4652EB1Z Solder Side

UG-900

ORDERING INFORMATION

BILL OF MATERIALS

Table 5. Bill of Materials for the EVAL-ADN4651EB1Z

Qty.	Reference Designator	Description	Manufacturer	Part Number
4	C1, C4, C5, C7	Capacitors, 100 nF, 0402	Multicomp	MC0402X104K100CT
2	C2, C6	Capacitors, 1 μF, 0603	Multicomp	MC0603X105K100CT
4	C3, C8, C11, C12, C17, C20	Capacitors, 0402	Not fitted	Not applicable
2	C9, C10	Capacitors, tantalum, 10 μF, Case C	AVX	TAJC106K016RNJ
2	C18, C19	Capacitors, 1 μF, 0402	Multicomp	MC0402X105K6R3CT
10	J1 to J10	Connectors, SMA, edge	Johnson	142-0701-801
4	J21 to J24	Connectors, SMA, edge	Not fitted	Not applicable
2	P4, P7	2-pin, header and jumper	TE Connectivity	826926-2 and 3M/969102-0000-DA)
8	R1, R4, R6, R8 to R12	Resistors, 0402	Not fitted	Not applicable
4	R2, R3, R5, R7	Resistors, 100 Ω, 0402	Multicomp	MCMR04X1000FTL
2	TP1/VDD1, TP40/VDD2	Test points, yellow	Vero	20-313140
4	TP2, TP3, TP41, TP42	Test points, black	Vero	20-2137
2	TP5/VIN1, TP6/VIN2	Test points, red	Vero	20-313137
1	U1	ADN4651 5 kV rms, 600 Mbps, LVDS isolator	Analog Devices	ADN4651BRWZ

Table 6. Bill of Materials for the EVAL-ADN4652EB1Z

Qty.	Reference Designator	Description	Manufacturer	Part Number
4	C1, C4, C5, C7	Capacitors, 100 nF, 0402	Multicomp	MC0402X104K100CT
2	C2, C6	Capacitors, 1 μF, 0603	Multicomp	MC0603X105K100CT
4	C3, C8, C11, C12, C17, C20	Capacitors, 0402	Not fitted	Not applicable
2	C9, C10	Capacitors, tantalum, 10 μF, Case C	AVX	TAJC106K016RNJ
2	C18, C19	Capacitors, 1 μF, 0402	Multicomp	MC0402X105K6R3CT
10	J1 to J10	Connectors, SMA, edge	Johnson	142-0701-801
4	J21 to J24	Connectors, SMA, edge	Not fitted	Not applicable
2	P4, P7	2-pin, header and jumper	TE Connectivity	826926-2 and 3M/969102-0000-DA)
8	R2, R3, R5, R7, R9 to R12	Resistors, 0402	Not fitted	Not applicable
4	R1, R4, R6, R8	Resistors, 100 Ω, 0402	Multicomp	MCMR04X1000FTL
2	TP1/VDD1, TP40/VDD2	Test points, yellow	Vero	20-313140
4	TP2, TP3, TP41, TP42	Test points, black	Vero	20-2137
2	TP5/VIN1, TP6/VIN2	Test points, red	Vero	20-313137
1	U1	ADN4652 5 kV rms, 600 Mbps, LVDS isolator	Analog Devices	ADN4652BRWZ

RELATED LINKS

Resource	Description
ADN4651	Product page, ADN4651, 5 kV rms, 600 Mbps, dual-channel isolated LVDS
ADN4652	Product page, ADN4652, 5 kV rms, 600 Mbps, dual-channel isolated LVDS

NOTES

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION ROARD, INCLUDING BLIT NOT LIMITED TO LOST PROFITS. DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL, ADISTOTAL LIABILITY FROM ANY AND ALL CALISES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

UG13761-0-5/16(A)

www.analog.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB I2C-CPEV/NOPB ISO35TEVM-434 416100120-3
XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB# MAX9286COAXEVKIT# MAX3100EVKIT
MAX13235EEVKIT MAX14970EVKIT# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT#
MAXCAM705OV635AAA# MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB# MAX13035EEVKIT+
DC1794A SN65HVS885EVM EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL
MAX16972AGEEVKIT# MARS1-DEMO3-ADAPTER-GEVB MAX7315EVKIT+ PIM511 PIM536 PIM517 DEV-17512 STRFUSB3307MPX-PPS-GEVK MAXREFDES177# EVAL-ADN4654EBZ MAX9275COAXEVKIT# MAX2202XEVKIT#
MAX13171EEVKIT+ MAX7322EVKIT+