FEATURES

3 -axis sensing

Small, low profile package
$4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 1.45 \mathrm{~mm}$ LFCSP
Low power: $350 \mu \mathrm{~A}$ typical
Single-supply operation: 1.8 V to 3.6 V
$10,000 \mathrm{~g}$ shock survival
Excellent temperature stability
Bandwidth adjustment with a single capacitor per axis
RoHS/WEEE lead-free compliant

APPLICATIONS

Cost-sensitive, low power, motion- and tilt-sensing applications Mobile devices

Gaming systems
Disk drive protection
Image stabilization
Sports and health devices

GENERAL DESCRIPTION

The ADXL325 is a small, low power, complete 3-axis accelerometer with signal conditioned voltage outputs. The product measures acceleration with a minimum full-scale range of $\pm 5 \mathrm{~g}$. It can measure the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration, resulting from motion, shock, or vibration.

The user selects the bandwidth of the accelerometer using the C_{X}, C_{Y}, and C_{Z} capacitors at the $X_{\text {out }}, Y_{\text {out }}$, and Zout pins. Bandwidths can be selected to suit the application with a range of 0.5 Hz to 1600 Hz for X and Y axes and a range of 0.5 Hz to 550 Hz for the Z axis.

The ADXL325 is available in a small, low profile, $4 \mathrm{~mm} \times$ $4 \mathrm{~mm} \times 1.45 \mathrm{~mm}, 16$-lead, plastic lead frame chip scale package (LFCSP_LQ).

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

ADXL325

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Typical Performance Characteristics 6
Theory of Operation 10
Mechanical Sensor. 10
Performance 10
Applications Information 11
Power Supply Decoupling 11
Setting the Bandwidth Using $\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{Y}}$, and C_{z} 11
Self Test 11
Design Trade-Offs for Selecting Filter Characteristics: The Noise/BW Trade-Off 11
Use with Operating Voltages Other Than 3 V 11
Axes of Acceleration Sensitivity 12
Layout and Design Recommendations 13
Outline Dimensions 14
Ordering Guide 14

REVISION HISTORY

8/09—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}, \mathrm{CX}_{\mathrm{X}}=\mathrm{C}_{\mathrm{Y}}=\mathrm{C}_{\mathrm{z}}=0.1 \mu \mathrm{~F}$, acceleration $=0 g$, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
SENSOR INPUT Measurement Range Nonlinearity Package Alignment Error Interaxis Alignment Error Cross-Axis Sensitivity ${ }^{1}$	Each axis Percent of full scale	± 5	$\begin{aligned} & \pm 6 \\ & \pm 0.2 \\ & \pm 1 \\ & \pm 0.1 \\ & \pm 1 \end{aligned}$		$\begin{aligned} & g \\ & \% \\ & \text { Degrees } \\ & \text { Degrees } \\ & \% \end{aligned}$
SENSITIVITY (RATIOMETRIC) ${ }^{2}$ Sensitivity at $\mathrm{X}_{\text {out, }} \mathrm{Y}_{\text {out, }} \mathrm{Z}_{\text {out }}$ Sensitivity Change Due to Temperature ${ }^{3}$	Each axis $\begin{aligned} & \mathrm{V}_{\mathrm{s}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=3 \mathrm{~V} \\ & \hline \end{aligned}$	156	$\begin{aligned} & 174 \\ & \pm 0.01 \end{aligned}$	192	$\begin{aligned} & \mathrm{mV} / \mathrm{g} \\ & \% /{ }^{\circ} \mathrm{C} \end{aligned}$
ZERO g BIAS LEVEL (RATIOMETRIC) 0 g Voltage at Xout, Yout, Zout $0 g$ Offset vs. Temperature	$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$	1.3	$\begin{aligned} & 1.5 \\ & \pm 1 \end{aligned}$	1.7	$\begin{aligned} & \mathrm{V} \\ & \mathrm{mg} /{ }^{\circ} \mathrm{C} \end{aligned}$
NOISE PERFORMANCE Noise Density Xout, Yout, Zout			250		$\mu \mathrm{g} / \sqrt{ } \mathrm{Hz}$ rms
FREQUENCY RESPONSE ${ }^{4}$ Bandwidth Xout, Yout ${ }^{5}$ Bandwidth Zout ${ }^{5}$ RFIT Tolerance Sensor Resonant Frequency	No external filter No external filter		$\begin{aligned} & 1600 \\ & 550 \\ & 32 \pm 15 \% \\ & 5.5 \end{aligned}$		Hz Hz $\mathrm{k} \Omega$ kHz
SELF TEST ${ }^{6}$ Logic Input Low Logic Input High ST Actuation Current Output Change at Xout Output Change at Yout Output Change at Zout	Self test 0 to 1 Self test 0 to 1 Self test 0 to 1	$\begin{aligned} & -90 \\ & +90 \\ & +90 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +2.4 \\ & +60 \\ & -190 \\ & +190 \\ & +320 \end{aligned}$	$\begin{array}{r} -350 \\ +350 \\ +580 \\ \hline \end{array}$	V V $\mu \mathrm{A}$ mV mV mV
OUTPUT AMPLIFIER Output Swing Low Output Swing High	No load No load		$\begin{aligned} & 0.1 \\ & 2.8 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
POWER SUPPLY Operating Voltage Range Supply Current Turn-On Time ${ }^{7}$	$V_{s}=3 \mathrm{~V}$ No external filter	1.8	350 1	3.6	V $\mu \mathrm{A}$ ms
TEMPERATURE Operating Temperature Range		-40		+85	${ }^{\circ} \mathrm{C}$

[^0]
ADXL325

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Acceleration (Any Axis, Unpowered)	$10,000 \mathrm{~g}$
Acceleration (Any Axis, Powered)	$10,000 \mathrm{~g}$
$\mathrm{~V}_{\mathrm{s}}$	-0.3 V to +3.6 V
All Other Pins	$(\mathrm{COM}-0.3 \mathrm{~V})$ to $\left(\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}\right)$
Output Short-Circuit Duration	Indefinite
\quad (Any Pin to Common)	
Temperature Range (Powered)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Range (Storage)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	NC	No Connect (or Optionally Ground)
2	ST	Self Test
3	COM	Common
4	NC	No Connect
5	COM	Common
6	COM	Common
7	COM	Common
8	Zout	Z Channel Output
9	NC	No Connect (or Optionally Ground)
10	Yout	Y Channel Output
11	NC	No Connect
12	Xout	X Channel Output
13	NC	No Connect
14	VS	Supply Voltage (1.8 V to 3.6 V)
15	Vs	Supply Voltage (1.8 V to 3.6 V)
16	NC	No Connect
EP	Exposed pad	Not internally connected. Solder for mechanical integrity.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{N}>1000$ for all typical performance plots, unless otherwise noted.

Figure 3. X -Axis Zero g Bias at $25^{\circ} \mathrm{C}, V_{S}=3 \mathrm{~V}$

Figure 4. Y-Axis Zero g Bias at $25^{\circ} \mathrm{C}, V_{s}=3 \mathrm{~V}$

Figure 5. Z-Axis Zero g Bias at $25^{\circ} \mathrm{C}, V_{s}=3 \mathrm{~V}$

Figure 6. X-Axis Self Test Response at $25^{\circ} \mathrm{C}, V_{s}=3 \mathrm{~V}$

Figure 7. Y-Axis Self Test Response at $25^{\circ} \mathrm{C}, \mathrm{V}_{S}=3 \mathrm{~V}$

Figure 8. Z-Axis Self Test Response at $25^{\circ} \mathrm{C}, V_{S}=3 \mathrm{~V}$

Figure 9. X-Axis Zero g Bias Temperature Coefficient, $V_{S}=3 \mathrm{~V}$

Figure 10. Y-Axis Zero g Bias Temperature Coefficient, $V_{S}=3 \mathrm{~V}$

Figure 11. Z-Axis Zero g Bias Temperature Coefficient, $V_{s}=3 \mathrm{~V}$

Figure 12. X-Axis Zero g Bias vs. Temperature, Eight Parts Soldered to $P C B$

Figure 13. Y-Axis Zero g Bias vs. Temperature, Eight Parts Soldered to $P C B$

Figure 14. Z-Axis Zero g Bias vs. Temperature, Eight Parts Soldered to PCB

Figure 15. X-Axis Sensitivity at $25^{\circ} \mathrm{C}, V_{S}=3 \mathrm{~V}$

Figure 16. Y-Axis Sensitivity at $25^{\circ} \mathrm{C}, V_{s}=3 \mathrm{~V}$

Figure 17. Z-Axis Sensitivity at $25^{\circ} \mathrm{C}, V_{s}=3 \mathrm{~V}$

Figure 18. X -Axis Sensitivity vs. Temperature,
Eight Parts Soldered to $P C B, V_{s}=3 \mathrm{~V}$

Figure 19. Y-Axis Sensitivity vs. Temperature, Eight Parts Soldered to $P C B, V_{s}=3 \mathrm{~V}$

Figure 20. Z-Axis Sensitivity vs. Temperature, Eight Parts Soldered to $P C B, V_{s}=3 \mathrm{~V}$

Figure 21. Typical Current Consumption vs. Supply Voltage

Figure 22. Typical Turn-On Time, $V_{S}=3 \mathrm{~V}$, $C_{X}=C_{Y}=C_{Z}=0.0047 \mu \mathrm{~F}$

ADXL325

THEORY OF OPERATION

The ADXL325 is a complete 3-axis acceleration measurement system. The ADXL325 has a measurement range of $\pm 5 \mathrm{~g}$ minimum. It contains a polysilicon surface micromachined sensor and signal conditioning circuitry to implement an openloop acceleration measurement architecture. The output signals are analog voltages that are proportional to acceleration. The accelerometer can measure the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration, resulting from motion, shock, or vibration.
The sensor is a polysilicon surface micromachined structure built on top of a silicon wafer. Polysilicon springs suspend the structure over the surface of the wafer and provide a resistance against acceleration forces. Deflection of the structure is measured using a differential capacitor that consists of independent fixed plates and plates attached to the moving mass. The fixed plates are driven by 180° out-of-phase square waves. Acceleration deflects the moving mass and unbalances the differential capacitor resulting in a sensor output whose amplitude is proportional to acceleration. Phase-sensitive demodulation techniques are then used to determine the magnitude and direction of the acceleration.

The demodulator output is amplified and brought off-chip through a $32 \mathrm{k} \Omega$ resistor. The user then sets the signal bandwidth of the device by adding a capacitor. This filtering improves measurement resolution and helps prevent aliasing.

MECHANICAL SENSOR

The ADXL325 uses a single structure for sensing the X, Y, and Z axes. As a result, the three axes sense directions are highly orthogonal with little cross-axis sensitivity. Mechanical misalignment of the sensor die to the package is the chief source of cross-axis sensitivity. Mechanical misalignment can, of course, be calibrated out at the system level.

PERFORMANCE

Rather than using additional temperature compensation circuitry, innovative design techniques ensure that high performance is built-in to the ADXL325. As a result, there is neither quantization error nor nonmonotonic behavior, and temperature hysteresis is very low (typically $<3 \mathrm{mg}$ over the $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range).

APPLICATIONS INFORMATION

POWER SUPPLY DECOUPLING

For most applications, a single $0.1 \mu \mathrm{~F}$ capacitor, C_{DC}, placed close to the ADXL325 supply pins adequately decouples the accelerometer from noise on the power supply. However, in applications where noise is present at the 50 kHz internal clock frequency (or any harmonic thereof), additional care in power supply bypassing is required because this noise can cause errors in acceleration measurement. If additional decoupling is needed, a 100Ω (or smaller) resistor or ferrite bead can be inserted in the supply line. Additionally, a larger bulk bypass capacitor ($1 \mu \mathrm{~F}$ or greater) can be added in parallel to C_{D}. Ensure that the connection from the ADXL325 ground to the power supply ground is low impedance because noise transmitted through ground has a similar effect as noise transmitted through Vs.

SETTING THE BANDWIDTH USING $\mathbf{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{y}}$, AND \mathbf{C}_{z}

The ADXL325 has provisions for band limiting the Xout, Yout, and Zout pins. Capacitors must be added at these pins to implement low-pass filtering for antialiasing and noise reduction. The 3 dB bandwidth equation is

$$
f_{-3 \mathrm{~dB}}=1 /\left(2 \pi(32 \mathrm{k} \Omega) \times C_{(X, Y, Z)}\right)
$$

or more simply

$$
f_{-3 \mathrm{~dB}}=5 \mu \mathrm{~F} / C_{(X, Y, Z)}
$$

The tolerance of the internal resistor ($\mathrm{R}_{\text {FLIT }}$) typically varies as much as $\pm 15 \%$ of its nominal value ($32 \mathrm{k} \Omega$), and the bandwidth varies accordingly. A minimum capacitance of $0.0047 \mu \mathrm{~F}$ for C_{X}, C_{Y}, and C_{Z} is recommended in all cases.

Table 4. Filter Capacitor Selection, $\mathrm{C}_{\mathrm{X}}, \mathrm{C}_{\mathrm{Y}}$, and C_{Z}

Bandwidth (Hz)	Capacitor ($\boldsymbol{\mu}$ F)
1	4.7
10	0.47
50	0.10
100	0.05
200	0.027
500	0.01

SELF TEST

The ST pin controls the self test feature. When this pin is set to V s, an electrostatic force is exerted on the accelerometer beam. The resulting movement of the beam allows the user to test whether the accelerometer is functional. The typical change in output is $-1.08 g$ (corresponding to -190 mV) in the X axis, $+1.08 g(+190 \mathrm{mV})$ on the Y axis, and $+1.83 \mathrm{~g}(+320 \mathrm{mV})$ on the Z axis. This ST pin can be left open circuit or connected to common (COM) in normal use.

Never expose the ST pin to voltages greater than $\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}$. If this cannot be guaranteed due to the system design (for instance, there are multiple supply voltages), then a low V_{F} clamping diode between ST and V_{s} is recommended.

DESIGN TRADE-OFFS FOR SELECTING FILTER CHARACTERISTICS: THE NOISE/BW TRADE-OFF

The selected accelerometer bandwidth ultimately determines the measurement resolution (smallest detectable acceleration). Filtering can be used to lower the noise floor to improve the resolution of the accelerometer. Resolution is dependent on the analog filter bandwidth at $\mathrm{X}_{\text {out, }}$ Yout, and Zout.

The output of the ADXL325 has a typical bandwidth greater than 500 Hz . The user must filter the signal at this point to limit aliasing errors. The analog bandwidth must be no more than half the analog-to-digital sampling frequency to minimize aliasing. The analog bandwidth can be further decreased to reduce noise and improve resolution.
The ADXL325 noise has the characteristics of white Gaussian noise, which contributes equally at all frequencies and is described in terms of $\mu g / \sqrt{ } \mathrm{Hz}$ (the noise is proportional to the square root of the accelerometer bandwidth). The user should limit bandwidth to the lowest frequency needed by the application to maximize the resolution and dynamic range of the accelerometer.

With the single-pole roll-off characteristic, the typical noise of the ADXL325 is determined by

$$
\text { rms Noise }=\text { Noise Density } \times(\sqrt{B W \times 1.6})
$$

Often, the peak value of the noise is desired. Peak-to-peak noise can only be estimated by statistical methods. Table 5 is useful for estimating the probabilities of exceeding various peak values, given the rms value.

Table 5. Estimation of Peak-to-Peak Noise

Peak-to-Peak Value	\% of Time That Noise Exceeds Nominal Peak-to-Peak Value
$2 \times \mathrm{rms}$	32
$4 \times \mathrm{rms}$	4.6
$6 \times \mathrm{rms}$	0.27
$8 \times \mathrm{rms}$	0.006

USE WITH OPERATING VOLTAGES OTHER THAN 3 V

The ADXL325 is tested and specified at $\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$; however, it can be powered with V_{s} as low as 1.8 V or as high as 3.6 V . Note that some performance parameters change as the supply voltage is varied.

The ADXL325 output is ratiometric; therefore, the output sensitivity (or scale factor) varies proportionally to the supply voltage. At $\mathrm{V}_{s}=3.6 \mathrm{~V}$, the output sensitivity is typically $209 \mathrm{mV} / \mathrm{g}$. At $\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V}$, the output sensitivity is typically $116 \mathrm{mV} / \mathrm{g}$.

The zero g bias output is also ratiometric; therefore, the zero g output is nominally equal to $\mathrm{V}_{\mathrm{s}} / 2$ at all supply voltages.
The output noise is not ratiometric but is absolute in volts; therefore, the noise density decreases as the supply voltage increases. This is because the scale factor $(\mathrm{mV} / \mathrm{g})$ increases while the noise voltage remains constant. At $\mathrm{V}_{S}=3.6 \mathrm{~V}$, the X - and Y -axis noise density is typically $200 \mu \mathrm{~g} / \sqrt{ } \mathrm{Hz}$, while at $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, the X - and Y-axis noise density is typically $300 \mu \mathrm{~g} / \sqrt{ } \mathrm{Hz}$.

ADXL325

Self test response in g is roughly proportional to the square of the supply voltage. However, when ratiometricity of sensitivity is factored in with supply voltage, the self test response in volts is roughly proportional to the cube of the supply voltage.
For example, at $V_{s}=3.6 \mathrm{~V}$, the self test response for the ADXL325 is approximately -328 mV for the X -axis, +328 mV for the Y axis, and +553 mV for the Z axis. At $\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V}$, the self test response is approximately -56 mV for the X axis, +56 mV for the Y axis, and -95 mV for the Z axis.
The supply current decreases as the supply voltage decreases. Typical current consumption at $\mathrm{V}_{\mathrm{s}}=3.6 \mathrm{~V}$ is $375 \mu \mathrm{~A}$, and typical current consumption at $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$ is $300 \mu \mathrm{~A}$.

AXES OF ACCELERATION SENSITIVITY

Figure 23. Axes of Acceleration Sensitivity (Corresponding Output Voltage Increases When Accelerated Along the Sensitive Axis)

Figure 24. Output Response vs. Orientation to Gravity

LAYOUT AND DESIGN RECOMMENDATIONS

The recommended soldering profile is shown in Figure 25, followed by a description of the profile features in Table 6. The recommended PCB layout or solder land drawing is shown in Figure 26.

Figure 25. Recommended Soldering Profile

Table 6. Recommended Soldering Profile

Profile Feature	Sn63/Pb37	Pb-Free
Average Ramp Rate ($\mathrm{L}_{\text {L }}$ to T_{P})	$3^{\circ} \mathrm{C} /$ sec maximum	$3^{\circ} \mathrm{C} / \mathrm{sec}$ maximum
Preheat		
Minimum Temperature ($\mathrm{T}_{\text {Smin }}$)	$100^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
Maximum Temperature ($\mathrm{T}_{\text {SMAX }}$)	$150^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
Time ($\mathrm{T}_{\text {smin }}$ to $\mathrm{T}_{\text {Smax }}$), ts	60 sec to 120 sec	60 sec to 180 sec
$\mathrm{T}_{\text {Smax }}$ to T_{L} Ramp-Up Rate	$3^{\circ} \mathrm{C} / \mathrm{sec}$ maximum	$3^{\circ} \mathrm{C} / \mathrm{sec}$ maximum
Time Maintained Above Liquidous (T_{L})		
Liquidous Temperature (T_{L})	$183^{\circ} \mathrm{C}$	$217^{\circ} \mathrm{C}$
Time (t_{L})	60 sec to 150 sec	60 sec to 150 sec
Peak Temperature (T_{P})	$240^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time Within $5^{\circ} \mathrm{C}$ of Actual Peak Temperature (tp)	10 sec to 30 sec	20 sec to 40 sec
Ramp-Down Rate	$6^{\circ} \mathrm{C} / \mathrm{sec}$ maximum	$6^{\circ} \mathrm{C} / \mathrm{sec}$ maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	6 minutes maximum	8 minutes maximum

dimensions shown in millimeters
Figure 26. Recommended PCB Layout

ADXL325

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Measurement Range	Specified Voltage	Temperature Range	Package Description	Package Option
ADXL325BCPZ 1	$\pm 5 \mathrm{~g}$	3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP_LQ	$\mathrm{CP}-16-5 \mathrm{a}$
ADXL325BCPZ-RL 1	$\pm 5 \mathrm{~g}$	3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP_LQ	CP-16-5a
ADXL325BCPZ-RL7 1	$\pm 5 \mathrm{~g}$	3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP_LQ	$\mathrm{CP}-16-5 \mathrm{a}$
EVAL-ADXL325Z 1				Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.

ADXL325

NOTES

ADXL325

NOTES

Analog Devices offers specific products designated for automotive applications; please consult your local Analog Devices sales representative for details. Standard products sold by Analog Devices are not designed, intended, or approved for use in life support, implantable medical devices, transportation, nuclear, safety, or other equipment where malfunction of the product can reasonably be expected to result in personal injury, death, severe property damage, or severe environmental harm. Buyer uses or sells standard products for use in the above critical applications at Buyer's own risk and Buyer agrees to defend, indemnify, and hold harmless Analog Devices from any and all damages, claims, suits, or expenses resulting from such unintended use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Acceleration Sensor Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
2019 EVAL-ADXL343Z-S BRKOUT-FXLN8362Q MXC6655XA-B 1018 EVAL-ADXL362-ARDZ EVAL-KXTJ2-1009 $1231 \underline{1413}$ DEV136292020 EVAL-ADXL343Z-DB EVAL-ADXL344Z-M EVAL-ADXL375Z-S EV-BUNCH-WSN-1Z EV-CLUSTER-WSN-2Z STEVAL-MKI033V1 EVAL-ADXL344Z-DB EVAL-ADXL346Z-DB EVAL-ADXL363Z-MLP EV-CLUSTER-WSN-1Z 2472 EVALADXL312Z EVAL-ADXL343Z EVAL-ADXL344Z-S EVAL-ADXL363Z-S EVAL-ADXL375Z STEVALMKI032V1 DFR0143 SEN0032 SEN0079 SEN0168 SEN0224 FIT0031 SEN-13963 MXP7205VW-B ASD2511-R-A 3463 SEN0140 SEN0183 SEN-11446 EVAL-KX022-1020 EVAL-KX023-1025 $163 \underline{2809} \underline{4097} 4344 \underline{4627} 4626$ ADIS16201/PCBZ

[^0]: ${ }^{1}$ Defined as coupling between any two axes.
 ${ }^{2}$ Sensitivity is essentially ratiometric to $\mathrm{V}_{\text {s }}$.
 ${ }^{3}$ Defined as the output change from ambient-to-maximum temperature or ambient-to-minimum temperature.
 ${ }^{4}$ Actual frequency response controlled by user-supplied external filter capacitors (C_{x}, C_{y}, C_{z}).
 ${ }^{5}$ Bandwidth with external capacitors $=1 /(2 \times \pi \times 32 \mathrm{k} \Omega \times \mathrm{C})$. For $C_{x}, C_{y}=0.003 \mu \mathrm{~F}$, bandwidth $=1.6 \mathrm{kHz}$. For $C_{z}=0.01 \mu \mathrm{~F}$, bandwidth $=500 \mathrm{~Hz}$. For $C_{x}, C_{y}, C_{z}=10 \mu F$, bandwidth $=0.5 \mathrm{~Hz}$.
 ${ }^{6}$ Self test response changes cubically with V_{s}.
 ${ }^{7}$ Turn-on time is dependent on C_{X}, C_{Y}, C_{z} and is approximately $160 \times C_{X}$ or C_{y} or $C_{Z}+1 \mathrm{~ms}$, where C_{X}, C_{Y}, C_{z} are in μF.

