Evaluation Board for Differential Amplifiers Offered in 8-Lead MSOP Packages

FEATURES

Flexible board layout for various circuit configurations Enables quick breadboarding/prototyping Edge mounted SMA connector provisions Easy connection to test equipment and other circuits RoHS compliant

GENERAL DESCRIPTION

The Analog Devices, Inc., DIFF AMP MSOP 8 PIN EVAL BD Z (EVAL-FDA-1RMZ-8) evaluation board evaluates single, high speed, fully differential amplifiers offered in 8-lead MSOP packages. The evaluation board is a bare board that enables users to quickly prototype a variety of amplifier circuits, minimizing risk and reducing time to market. The board layout is flexible and allows many circuit configurations, including traditional four resistor circuits, circuits with two different feedback loops, and filters. Most resistors and capacitors use 1206, 0402, 0508, and 0603 packages.

Because this universal evaluation board can be used with many Analog Devices differential amplifiers in 8-lead MSOP packages, the evaluation board label does not contain specific device numbers.

The board accommodates the ADA4940-1, as well as the AD8131, AD8132, and AD8138 differential amplifiers (see the Related Links section for all devices). The data sheets for these devices should be consulted in conjunction with this evaluation board user guide.
Figure 1 shows the component side of the bare evaluation board. Figure 2 shows the circuit side of the bare evaluation board.

Figure 3 shows the evaluation board schematic. The printed circuit board (PCB) assembly drawings are shown in Figure 4 and Figure 5. The layout pattern for the PCB is shown in Figure 6 and Figure 7.

EVALUATION BOARD COMPONENT SIDE AND CIRCUIT SIDE

Figure 1. Evaluation Board, Component Side

Figure 2. Evaluation Board, Circuit Side

TABLE OF CONTENTS

Features 1
General Description 1
Evaluation Board Component Side and Circuit Side 1
Revision History 2
Evaluation Board Hardware 3
Power Supplies 3
Feedback Networks and Input/Output Terminations 3
Vосм Input 3
Common-Mode Voltage 3
SMA Input/Output Connectors 3
Evaluation Board Schematic and Artwork 4
Ordering Information 6
Bill of Materials. 6
Related Links 6

REVISION HISTORY

3/16-Revision 0: Initial Version

EVALUATION BOARD HARDWARE

POWER SUPPLIES

Apply power to the evaluation board through the TVCC and TVEE test points (see Figure 3). The board accommodates single or dual supplies. For single-supply operation, connect the negative supply to the ground plane.
It is important that the power supply pins of the device under test (DUT) have broadband decoupling circuitry. The board layout facilitates the decoupling ability with footprints for 0508 ceramic capacitors (CVCC2 and CVEE2) on each supply, as well as 0402 ceramic capacitors (CVCC1 and CVEE1). Bulk decoupling is provided by CVCC3 and CVEE3; $10 \mu \mathrm{~F}$ tantalum capacitors are recommended.

FEEDBACK NETWORKS AND INPUT/OUTPUT TERMINATIONS

Resistors RGN and RFN comprise the negative resistive feedback loop and Resistors RGP and RFP comprise the positive feedback loop (see Figure 3). To minimize summing node capacitances, the ground plane under and around Pin 1 and Pin 8 of the DUT and the copper that connects to the pins are removed.
Resistors RTN and RTP are included as input termination resistors for applications that have single-ended inputs.

Vocm INPUT

An external voltage can be applied to the Vосм pin on the DUT via the TVOCM test point (referenced to the ground plane of the board). In analog-to-digital converter (ADC) driver applications, it is convenient to apply the ADC dc reference voltage output directly. The CVOM component position can be used for both resistors and capacitors. A $0.1 \mu \mathrm{~F}$ capacitor provides bypassing for the dc voltage applied to the Vосм pin in normal applications.

It is also possible to drive the $\mathrm{V}_{\text {осм }}$ input from an external ac source. In this case, omit CVOM or reduce it to a value that allows the desired signal to pass.

COMMON-MODE VOLTAGE

The internal common-mode feedback loop, used in the differential drivers, forces the output common-mode voltage to equal the voltage applied to the Vосм input, thereby providing excellent output balance.

SMA INPUT/OUTPUT CONNECTORS

The inputs and outputs have edge mounted SMA connectors for a convenient connection to coaxial cables. The recommended connector is 142-0701-801 from Johnson Components, or an equivalent.

EVALUATION BOARD SCHEMATIC AND ARTWORK

Figure 3. Differential Amplifier Evaluation Board Schematic, 8-Lead MSOP

Figure 4. Top Silkscreen

Figure 5. Bottom Silkscreen

Figure 6. Assembly Drawing, Component Side

Figure 7. Assembly Drawing, Circuit Side

ORDERING INFORMATION

BILL OF MATERIALS

Table 1.

Qty	Reference Designator	Description	Package
3	CVCC3, CVEE3, CD3	Capacitor, $10 \mu \mathrm{~F}$	C1206
3	CVCC2, CVEE2, CD2	Capacitor, $0.1 \mu \mathrm{~F}$	C0508
3	CVCC1, CVEE1, CD1	Capacitor, $0.1 \mu \mathrm{~F}$	C0402
2	CPD, CVOM	Capacitor or resistor	C0402
4	$-I N,+$ N , -OUT, +OUT	Side launch SMA connector	SMA/SMT
4	VCC, VEE, VOCM, PD	Vertical launch SMA connector	SMA/SMT
10	RTN, RTP, RGP, RGN, RFP, RFN, ROP1, RON1, ROP2, RON2	Resistor, user defined value	R0603
8	TVCC, TVEE, TVOCM, TPD, GND1 to GND4	Test point	TP1
1	DUT	Device under test	8-lead SOIC
1	PCB	Printed circuit board	

RELATED LINKS

Table 2.

Resource	Description
ADA4940-1	Product page, ultralow power, low distortion differential ADC driver
AD8131	Product page, low cost, high speed differential driver with a fixed gain of 2
AD8132	Product page, low cost, high speed differential amplifier
AD8137	Product page, low cost, high speed differential ADC driver
AD8138	Product page, low distortion differential ADC driver
AD8139	Product page, ultralow noise, rail-to-rail differential ADC driver

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILTTY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED"AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUTNOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITEDTOTHE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
EVAL-ADCMP566BCPZ EVAL-ADCMP606BKSZ AD8013AR-14-EBZ AD8033AKS-EBZ AD8044AR-EBZ AD8225-EVALZ ADA4859-3ACP-EBZ ADA4862-3YR-EBZ DEM-OPA-SO-2B AD744JR-EBZ AD8023AR-EBZ AD8030ARJ-EBZ AD8040ARU-EBZ AD8073JR-EBZ AD813AR-14-EBZ AD848JR-EBZ ADA4858-3ACP-EBZ ADA4922-1ACP-EBZ 551600075-001/NOPB DEM-OPA-SO2E THS7374EVM EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ MAX9928EVKIT+ MAX9636EVKIT+ MAX9611EVKIT MAX9937EVKIT+ MAX9934TEVKIT+ MAX44290EVKIT\# MAX2644EVKIT MAX4073EVKIT+ DEM-OPA-SO-2C MAX2643EVKIT ISL28158EVAL1Z MAX40003EVKIT\# MAX2473EVKIT MAX2472EVKIT MAX4223EVKIT MAX9700BEVKIT MADL-011014-001SMB DC1685A DEM-OPA-SO-2D MAX2670EVKIT\# DEM-OPA-SO-1E AD8137YCP-EBZ EVAL-ADA4523-1ARMZ MAX44242EVKIT\# EVAL-LT5401_32FDAZ

