Universal Precision Op Amp Evaluation Board in SOIC Package

by Giampaolo Marino, Soufiane Bendaoud, and Steve Ranta

INTRODUCTION

The EVAL-PRAOPAMP-1R is an evaluation board which accommodates single op amps in SOIC packages. It is meant to provide the user with multiple choices and extensive flexibility for different applications circuits and configurations. This board is not intended to be used with high frequency components or high speed amplifiers. However, it provides the user with many combinations for various circuit types including active filters, differential amplifiers, and external frequency compensation circuits. A few examples of application circuits are given in this application note.

Figure 1. Simple Low-Pass Filter

LOW-PASS FILTER

Figure 1 is a typical representation of a first-order lowpass filter. This circuit has a 6 dB per octave roll-off after a close-loop -3 dB point defined by f_{C}. Gain below this frequency is defined as the magnitude of R7 to R2. The circuit might be considered as an ac integrator for frequencies well above f_{C}; however, the time domain response is that of a single $R C$, rather than an integral.
$f_{C}=1 /(2 \pi \times R 7 \times C 7) ;-3 d B$ frequency
$f_{L}=1 /(2 \pi \times R 2 \times C 7) ;$ unity gain frequency
Acl $=-($ R7/R2); close loop gain
R6 should be chosen equal to the parallel combination between R7 and R2 in order to minimize errors due to bias currents.

Figure 2. Difference Amplifier

DIFFERENCE AMPLIFIER AND PERFORMANCE OPTIMIZATION

Figure 2 shows an op amp configured as a difference amplifier. The difference amplifier is the complement of the summing amplifier, and allows the subtraction of two voltages or the cancellation of a signal common to both inputs. The circuit shown in Figure 2 is useful as a computational amplifier in making a differential to single-ended conversion or in rejecting a commonmode signal. The output voltage $\mathrm{V}_{\text {OUT }}$ is comprised of two separate components:

1. A component $\mathrm{V}_{\text {OUT }} 1$ due to $\mathrm{V}_{\text {IN }} 1$ acting alone $\left(\mathrm{V}_{\text {IN }} 2\right.$ short-circuited to ground.)
2. A component $\mathrm{V}_{\text {OUT }} 2$ due to $\mathrm{V}_{\text {IN }} 2$ acting alone ($\mathrm{V}_{\text {IN }} 1$ short-circuited to ground.)

The algebraic sum of these two components should be equal to $V_{\text {OUT }}$. By applying the principles expressed in the output voltage $\mathrm{V}_{\text {OUT }}$ components, and by letting R4 $=R 2$ and R7 = R6, then:
$\mathrm{V}_{\text {OUT }} 1=\mathrm{V}_{\text {IN }} 1 \mathrm{R} 7 / \mathrm{R} 2$
$\mathrm{V}_{\text {OUT }} 2=-\mathrm{V}_{\text {IN }} 2$ R7/R2
$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OUT }} 1+\mathrm{V}_{\text {OUT }} 2=\left(\mathrm{V}_{\text {IN }} 1-\mathrm{V}_{\text {IN }} 2\right) \mathrm{R} 7 / \mathrm{R} 1$
Difference amplifiers are commonly used in high accuracy circuits to improve the common-mode rejection ratio, typically known as CMRR.
For this type of application, CMRR depends upon how tightly matched resistors are used; poorly matched resistors result in a low value of CMRR.

To see how this works, consider a hypothetical source of error for resistor R7 (1 - error). Using the superposition principle and letting $R 4=R 2$ and $R 7=R 6$, the output voltage would be as follows:

$$
\begin{gathered}
V_{\text {OUT }}=\left\{\begin{array}{c}
{\left[\frac{\left[\frac{R 7}{R 2}\left(1-\frac{R 2+2 R 7}{R 2+R 7}\right) \times \frac{\text { error }}{2}\right]}{V D+\left(\frac{R 7}{R 2+R 7} \times \text { error }\right)}\right.} \\
V_{D D}=V_{I N} 2-V_{I N} 1
\end{array}\right\}
\end{gathered}
$$

From this equation, $A_{C M}$ and $A_{D M}$ can be defined as follows:
$A_{C M}=R 7 /(R 7-R 2) \times$ error
$A_{D M}=R 7 / R 2 \times\{1-[(R 2+2 R 7 / R 2+R 7) \times$ error $/ 2]\}$
These equations demonstrate that when there is not an error in the resistor values, the $\mathrm{A}_{\mathrm{CM}}=0$ and the amplifier responds only to the differential voltage being applied to its inputs; under these conditions, the CMRR of the circuit becomes highly dependent on the CMRR of the amplifier selected for this job.

As mentioned above, errors introduced by resistor mismatch can be a big drawback of discrete differential amplifiers, but there are different ways to optimize this circuit configuration:

1. The differential gain is directly related to the ratio R7/ R2; therefore, one way to optimize the performance of this circuit is to place the amplifier in a high gain configuration. When larger values for resistors R7 and R6 and smaller values for resistors R2 and R4 are selected, the higher the gain, the higher the CMRR. For example, when $\mathrm{R} 7=\mathrm{R} 6=10 \mathrm{k} \Omega$, and $\mathrm{R} 2=\mathrm{R} 4=1 \mathrm{k} \Omega$, and error $=0.1 \%$, CMRR improves to better than 80 dB . For high gain configuration, select amplifiers with very low $\mathrm{I}_{\text {BIAS }}$ and very high gain (such as the AD8551, AD8571, AD8603, and AD8605) to reduce errors.
2. Select resistors that have much tighter tolerance and accuracy. The more closely they are matched, the better the CMRR. For example, if a CMRR of 90 dB is needed, then match resistors to approximately 0.02%.

CURRENT-TO-VOLTAGE CONVERTER

Current may be measured in two ways with an operational amplifier. Current can be converted to a voltage with a resistor and then amplified or injected directly into a summing node.

Figure 3. Current-to-Voltage Converter
Figure 3 is a typical representation of a current-to-voltage transducer. The input current is fed directly into the summing node and the amplifier output voltage changes to exactly the same current from the summing node through R7. The scale factor of this circuit is R7 volts per amps. The only conversion error in this circuit is $\mathrm{I}_{\text {BIAS }}$, which is summed algebraically with $\mathrm{I}_{\mathrm{IN}} 1$.

Figure 4. Bistable Multivibrator

Figure 5. Output Response

GENERATION OF SQUARE WAVEFORMS USING A BISTABLE MULTIVIBRATOR

A square waveform can be simply generated by arranging the amplifier for a bistable multivibrator to switch states periodically as Figure 5 shows.

Once the output of the amplifier reaches one of two possible levels, such as L+, capacitor C9 charges toward this level through resistor R7. The voltage across C9, which is applied to the negative input terminal of the amplifier denoted as V-, then rises exponentially toward $\mathrm{L}+$ with a time constant $\tau=$ C9R7. Meanwhile, the voltage
at the positive input terminal of the amplifier, denoted as $\mathrm{V}+=B L+$. This continues until the capacitor voltage reaches the positive threshold V_{TH}, at which point the bistable multivibrator switches to the other stable state in which $\mathrm{V}_{\mathrm{O}}=\mathrm{L}-$ and $\mathrm{V}+=\mathrm{BL}-$. This is shown in Figure 5.
The capacitor then begins to discharge, and its voltage, $\mathrm{V}-$, decreases exponentially toward $\mathrm{L}-$. This continues until V - reaches the negative threshold $V_{T L}$, at which time the bistable multivibrator switches to the positive output state, and the cycle repeats itself.

It is important to note that the frequency of the square wave being generated, f_{O}, depends only on the external components being used. Any variation in L+ will cause $\mathrm{V}+$ to vary in proportion, ensuring the same transition time and the same oscillation frequency. The maximum operating frequency is determined by the amplifier speed, which can be increased significantly by using faster devices.

The lowest operating frequency depends on the practical upper limits set by R7 and C9.
Using the name convention outlined on the PRA OPAMP evaluation board, the circuit should be connected as follows:
$B=R 4 /(R 4+R 9) ;$ feedback factor (noninverting input)
$T=2 R 7 \times C 9 \times \ln ((1+B) /(1-B)) ;$ period of oscillation
$f_{O}=1 / T$; oscillation frequency

Figure 6. Series Resistor Compensation

Figure 7. Capacitive Load Drive Without Resistor

Figure 8. Capacitive Load Drive with Resistor

EXTERNAL COMPENSATIONTECHNIQUES

Series Resistor Compensation

The use of external compensation networks may be required to optimize certain applications. Figure 6 is a typical representation of a series resistor compensation for stabilizing an op amp driving capacitive load. The stabilizing effect of the series resistor isolates the op amp output and the feedback network from the capacitive load. The required amount of series resistance depends on the part used, but values of 5Ω to 50Ω are usually sufficient to prevent local resonance. The disadvantages of this technique are a reduction in gain accuracy and extra distortion when driving nonlinear loads.

Figure 9. Snubber Network

Figure 10. Capacitive Load Drive Without Snubber

Figure 11. Capacitive Load Drive with the Snubber

Snubber Network

Another way to stabilize an op amp driving a capacitive load is with the use of a snubber, as shown in Figure 9. This method presents the significant advantage of not reducing the output swing because there is not any isolation resistor in the signal path. Also, the use of the snubber does not degrade the gain accuracy or cause extra distortion when driving a nonlinear load. The exact R_{S} and C_{S} combinations can be determined experimentally.

Figure 12. EVAL-PRAOPAMP-1R Electrical Schematic

Figure 13. EVAL-PRAOPAMP-1R Board Layout Patterns

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
EVAL-ADCMP566BCPZ EVAL-ADCMP606BKSZ AD8013AR-14-EBZ AD8033AKS-EBZ AD8044AR-EBZ AD8225-EVALZ ADA4859-3ACP-EBZ ADA4862-3YR-EBZ DEM-OPA-SO-2B AD744JR-EBZ AD8023AR-EBZ AD8030ARJ-EBZ AD8040ARU-EBZ AD8073JR-EBZ AD813AR-14-EBZ AD848JR-EBZ ADA4858-3ACP-EBZ ADA4922-1ACP-EBZ 551600075-001/NOPB DEM-OPA-SO2E THS7374EVM EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ MAX9928EVKIT+ MAX9636EVKIT+ MAX9611EVKIT MAX9937EVKIT+ MAX9934TEVKIT+ MAX44290EVKIT\# MAX2644EVKIT MAX2634EVKIT MAX4073EVKIT+ DEM-OPA-SO-2C MAX2643EVKIT ISL28158EVAL1Z MAX40003EVKIT\# MAX2473EVKIT MAX2472EVKIT MAX4223EVKIT MAX9700BEVKIT MADL-011014-001SMB DC1685A DEM-OPA-SO-2D MAX2670EVKIT\# DEM-OPA-SO-1E AD8137YCP-EBZ EVAL-ADA4523-1ARMZ MAX44242EVKIT\#

