## FEATURES

Filterless digital input Class-D amplifier
Standalone operation or $\mathrm{I}^{2} \mathrm{C}$ control
Serial digital audio interface supports common formats: $I^{2} S$, left justified, right justified, TDM1-16, and PCM
2.31 W into $4 \Omega$ and 1.35 W into $\mathbf{8 \Omega}$ at 5 V supply with $1 \%$ THD + N
Available in 12 -ball $1.4 \mathrm{~mm} \times 1.7 \mathrm{~mm} \times 0.4 \mathrm{~mm}$ pitch WLCSP
Efficiency $\mathbf{9 0 \%}$ at full scale into $\mathbf{8 \Omega}$
9 mW loaded idle power at $1.8 \mathrm{~V} / 3.6 \mathrm{~V}$
SNR = 98 dB , A-weighted
PSRR = $\mathbf{8 0}$ dB at 217 Hz , dither input
Supports wide range of sample rates: $8.0 \mathbf{~ k H z}$ to $\mathbf{4 8 . 0} \mathbf{~ k H z}$
Autosample rate and MCLK rate detection
No BCLK required for operation
2.5 V to 5.5 V PV ${ }_{\text {DD }}$ speaker operating supply voltage
1.5 V to 3.6 V VDD operating voltage

Pop and click suppression
Short-circuit and thermal protection with autorecovery
Smart power-down when no input signal detected
Power-on reset
Low EMI emissions

## GENERAL DESCRIPTION

The SSM2519 is a digital input, Class-D power amplifier that combines a digital-to-analog converter (DAC) and a sigma-delta $(\Sigma-\Delta)$ Class-D modulator. This unique architecture enables extremely low, real-world power consumption from digital audio sources with excellent audio performance. The SSM2519 is ideal for power sensitive applications, such as mobile phones and portable media players, where system noise can corrupt small analog signals such as those sent to an analog input audio amplifier.

Using the SSM2519, audio data can be transmitted to the amplifier over a standard digital audio serial interface, thereby significantly reducing the effect of noise sources such as GSM interference or other digital signals on the transmitted audio. The closed-loop digital input design retains the benefits of a completely digital amplifier, yet enables very good PSRR and audio performance. The three-level, $\Sigma-\Delta$ Class-D modulator is designed to provide the least amount of EMI interference, the lowest quiescent power dissipation, and the highest audio efficiency without sacrificing audio quality.

## APPLICATIONS

Mobile phones
Portable media players
Laptop PCs
Wireless speakers
Portable gaming
Navigation systems


Figure 1.

Input is provided via a serial audio interface, programmable to accept all common audio formats including $I^{2} S$, left justified (LJ), right justified (RJ), TDM, and PCM. The SSM2519 is designed to operate with or without a control interface such as $\mathrm{I}^{2} \mathrm{C}$, which is typically required for this type of device. Several control pins offer selection of operation when $\mathrm{I}^{2} \mathrm{C}$ control is not used. The SSM2519 can accept a variety of input MCLK frequencies and can use BCLK as the clock source in some configurations. Both the input sample rate and MCLK rates are automatically detected.

The architecture of the SSM2519 provides a solution that offers lower power and higher performance than existing DAC plus Class-D solutions. Its digital interface also offers a better system solution for other products whose sole audio source is digital, such as wireless speakers, laptop PCs, portable digital televisions, and navigation systems.
The SSM2519 is specified over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. It has built-in thermal shutdown and output short-circuit protection. It is available in a 12 -ball, $1.4 \mathrm{~mm} \times$ 1.7 mm wafer level chip scale package (WLCSP).

## TABLE OF CONTENTS

Features ..... 1
Applications ..... 1
Functional Block Diagram .....  1
General Description .....  1
Revision History ..... 2
Specifications ..... 3
Performance Specifications ..... 3
Power Supply Requirements ..... 4
Digital Input/Output ..... 4
Digital Timing ..... 4
Absolute Maximum Ratings ..... 6
Thermal Resistance ..... 6
ESD Caution ..... 6
Pin Configuration and Function Descriptions ..... 7
Typical Performance Characteristics ..... 8
Theory of Operation ..... 12
Overview ..... 12
Standalone and $\mathrm{I}^{2} \mathrm{C}$ Operational Mode ..... 12
Master and Bit Clock ..... 12
Digital Input Serial Audio Interface ..... 13
Channel Mapping ..... 13
Power Supplies . ..... 13
Power Control ..... 14
Power-On Reset/Voltage Supervisor ..... 14
Low Power Modes

$\qquad$ ..... 14
Volume Control ..... 14
Analog Gain ..... 14
Fault Detection and Recovery ..... 14
Digital Audio Formats ..... 15
Stereo Mode ..... 15
TDM, 50\% Duty Cycle Mode ..... 15
TDM, Pulse Mode ..... 15
PCM, Multichannel Mode ..... 16
PCM, Mono Mode ..... 16
$I^{2} \mathrm{C}$ Configuration Interface ..... 17
Overview ..... 17
Register Summary ..... 19
Register Details ..... 20
Software Reset and Master Software Power-Down Control Register. ..... 20
Edge Speed, Power, and Clocking Control Register ..... 21
Serial Audio Interface and Sample Rate Control Register. ..... 22
Serial Audio Interface Control Register ..... 23
Channel Mapping Control Register ..... 24
Volume Control Register ..... 25
Gain and Mute Control Register ..... 26
Fault Control Register ..... 27
Outline Dimensions ..... 28
Ordering Guide ..... 28

## REVISION HISTORY

## 7/12—Revision 0: Initial Version

## SPECIFICATIONS

All conditions at $\mathrm{PV} \mathrm{VD}_{\mathrm{DD}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} ; \mathrm{f}_{\mathrm{S}}=48 \mathrm{kHz} ; \mathrm{MCLK}=128 \times \mathrm{f}_{\mathrm{S}} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H} ;$ default $\mathrm{I}^{2} \mathrm{C}$ settings; volume control 0 dB setting, unless otherwise noted.

## PERFORMANCE SPECIFICATIONS

Table 1.


## POWER SUPPLY REQUIREMENTS

Table 2.

| Parameter | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- |
| $P V_{D D}$ | 2.5 | 3.6 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{DD}}$ | 1.5 | 1.8 | 3.6 | V |

## DIGITAL INPUT/OUTPUT

Table 3.


## DIGITAL TIMING

All timing specifications are given for the default setting ( $\mathrm{I}^{2} \mathrm{~S}$ mode) of the serial input port.
Table 4.


Digital Timing Diagrams


Figure 2. Serial Input Port Timing


Figure 3. $1^{2} C$ Port Timing

## ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings apply at $25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 5.

| Parameter | Rating |
| :--- | :--- |
| PVDD Supply Voltage | -0.3 V to 6 V |
| VDD Supply Voltage | -0.3 V to 3.6 V |
| Input Voltage (MCLK, BCLK, $\overline{\text { SD },}$ | -0.3 V to 3.6 V |
| LRCLK, LR_FORMAT, GAIN, SDATA) |  |
| ESD Susceptibility | 4 kV |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Junction Temperature Range | $-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 60 sec) | $300^{\circ} \mathrm{C}$ |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to 7absolute maximum rating conditions for extended periods may affect device reliability.

## THERMAL RESISTANCE

$\theta_{\text {IA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 6. Thermal Resistance

| Package Type | $\boldsymbol{\theta}_{\mathrm{JA}}$ | Unit |
| :--- | :--- | :--- |
| 12 -ball, $1.4 \mathrm{~mm} \times 1.7 \mathrm{~mm}$ WLCSP | 56.1 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 4. Pin Configuration-Top View
Table 7. Pin Function Descriptions

| Ball Number | Pin Name | Function ${ }^{1}$ | Description |
| :---: | :---: | :---: | :---: |
| A1 | OUT+ | 0 | Amplifier Output Positive |
| A2 | OUT- | 0 | Amplifier Output Negative |
| A3 | MCLK | 1 | Serial Audio Interface Master Clock |
| B1 | PVDD | P | 2.5 V to 5.5 V Amplifier Power |
| B2 | VDD | P | 1.5 V to 3.6 V Digital and Analog Power |
| B3 | BCLK | I | $1^{2}$ S Bit Clock/Generated BCLK Rate Select |
| C1 | GND | P | Ground |
| C2 | $\overline{\mathrm{SD}}$ |  | Power-Down Control—Active Low |
| C3 | LRCLK |  | 12S Left/Right Frame Clock |
| D1 | LR_FORMA | 1 | Left/Right Channel Selection and Serial Format Selection/ $/{ }^{2} \mathrm{C}$ Clock |
| D2 | GAIN/SDA | 1/0 | Digital and Analog Gain Selection/ $I^{2} \mathrm{C}$ Serial Data |
| D3 | SDATA | 1 | I'S Serial Data |

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 5. THD $+N$ vs. Output Power into $8 \Omega, 5.0$ V Gain Setting


Figure 6. THD $+N$ vs. Output Power into $4 \Omega, 5.0$ V Gain Setting


Figure 7. $T H D+N$ vs. Frequency into $8 \Omega, P V_{D D}=5.0 \mathrm{~V}$


Figure 8. THD $+N$ vs. Output Power into 8 $\Omega, 3.6$ V Gain Setting


Figure 9. THD + N vs. Output Power into $4 \Omega, 3.6$ V Gain Setting


Figure 10. $\mathrm{THD}+\mathrm{N}$ vs. Frequency into $4 \Omega, P V_{D D}=5.0 \mathrm{~V}$


Figure 11. $T H D+N$ vs. Frequency into $8 \Omega, P V_{D D}=3.6 \mathrm{~V}$


Figure 12. $T H D+N$ vs. Frequency into $4 \Omega, P V_{D D}=3.6 \mathrm{~V}$


Figure 13. $T H D+N$ vs. Frequency into $8 \Omega, P V_{D D}=2.5 \mathrm{~V}$


Figure 14. $T H D+N$ vs. Frequency into $4 \Omega, P V_{D D}=2.5 \mathrm{~V}$


Figure 15. Quiescent Current vs. Supply Voltage PVDD


Figure 16. Quiescent Current vs. Supply Voltage VDD


Figure 17. Quiescent Current vs. Supply Voltage VDD


Figure 18. Maximum Output Power vs. $P V_{D D}$
( $f_{\mathrm{IN}}=1 \mathrm{kHz}, R_{L}=8 \Omega$ )


Figure 19. Maximum Output Power vs. $P V_{D D}$
$\left(f_{i N}=1 \mathrm{kHz}, R_{L}=4 \Omega\right)$


Figure 20. Power Supply Current vs. Pout, $4 \Omega$


Figure 21. Class-D Efficiency vs. Pout, $4 \Omega$


Figure 22. Power Supply Current vs. Pout, $8 \Omega$


Figure 23. Class-D Efficiency vs. Pout, $8 \Omega$


Figure 24. Output Spectrum, $100 \mathrm{~mW}, 8 \Omega$

## THEORY OF OPERATION

## overview

The SSM2519 is a fully integrated digital switching audio amplifier. The SSM2519 receives digital audio inputs and produces the PDM differential switching outputs using an internal power stage. The part has built-in protections against overtemperature as well as overcurrent. The SSM2519 also has built-in soft turn-on and soft turn-off for pop and click suppression.

## STANDALONE AND I ${ }^{2}$ C OPERATIONAL MODE

The SSM2519 supports both standalone and $\mathrm{I}^{2} \mathrm{C}$ control modes. The setting on the $\overline{\mathrm{SD}}$ pin determines which mode is used.

Table 8. $\overline{\text { SD }}$ Pin Settings

| $\overline{\text { SD Pin }}$ | Operation |
| :--- | :--- |
| Tie to VDD Through $20 \mathrm{k} \Omega$ | $\mathrm{I}^{2} \mathrm{C}$ |
| Connect to VDD Without $20 \mathrm{k} \Omega$ | Standalone mode |
| Connect to GND (Shorted or with $20 \mathrm{k} \Omega$ ) | Shutdown mode |

## MASTER AND BIT CLOCK

The SSM2519 requires an external clock present at the MCLK input pin to operate. This clock must be fully synchronous with the incoming digital audio on the serial interface. Internal to the IC, a clock frequency of 2.048 MHz to 24.576 MHz is required. This internal clock is derived from the external MCLK by dividing, passing through, or doubling in frequency the external MCLK signal.
Different rates for MCLK are supported at different sample rates. Refer to Table 9 for all available options. The MCLK rate as well as sample rate can be automatically detected by setting the AMCS and ASR bits in Register 0x01, or they can be manually set (MCS bits in Register 0x00, and FS bits in Register 0x02) if AMCS or ASR is cleared.

When in standalone mode or in $\mathrm{I}^{2} \mathrm{C}$ mode and auto clock rate detection is enabled (Register 0x01, Bit $1, \mathrm{AMCS}=1$ ), the internal clock generation circuitry is automatically configured. When autosample rate detection is disabled ( $\mathrm{AMCS}=0$ ), the MCS bits in Register 0x00 must be set with the correct value to generate the internal clock.

When the SSM2519 has entered its power-down state, it is possible to gate this clock to conserve additional system power. However, a master clock must be present for the audio amplifier to operate.
If the serial interface bit clock (BCLK) is in the range of acceptable internal master clock frequencies (between 2.048 MHz and 6.144 MHz ), it can serve as both master clock and the bit clock. Setting NO_BCLK (Bit 5 of Register 0x00) routes the signal on the MCLK pin to serve as the internal bit clock as well. In this case, tie the BCLK pin to ground.

Table 9. Supported MCLK Rate for Different Sample Frequencies

| Sample Rates | Supported MCLK Rates | Supported MCLK Frequencies |
| :--- | :--- | :--- |
| 8 kHz to 12 kHz | $256 \times \mathrm{f}_{\mathrm{s}} / 512 \times \mathrm{f}_{\mathrm{s}} / 1024 \times \mathrm{f}_{\mathrm{s}} / 1536 \times \mathrm{f}_{\mathrm{s}} / 2048 \times \mathrm{f}_{\mathrm{s}}$ | 2.048 MHz to 24.576 MHz |
| 16 kHz to 24 kHz | $128 \times \mathrm{f}_{\mathrm{s}} / 256 \times \mathrm{f}_{\mathrm{s}} / 512 \times \mathrm{f}_{\mathrm{s}} / 768 \times \mathrm{f}_{\mathrm{s}} / 1024 \times \mathrm{f}_{\mathrm{s}}$ | 2.048 MHz to 24.576 MHz |
| 32 kHz to 48 kHz | $64 \times \mathrm{f}_{\mathrm{s}} / 128 \times \mathrm{f}_{\mathrm{s}} / 256 \times \mathrm{f}_{\mathrm{s}} / 384 \times \mathrm{f}_{\mathrm{s}} / 512 \times \mathrm{f}_{\mathrm{s}}$ | 2.048 MHz to 24.576 MHz |
| 8 kHz to 12 kHz | $400 \times \mathrm{f}_{\mathrm{s}} / 800 \times \mathrm{f}_{\mathrm{s}} / 1600 \times \mathrm{f}_{\mathrm{s}}$ | 3.2 MHz to 19.2 MHz |
| 16 kHzz to 24 kHz | $200 \times \mathrm{f}_{\mathrm{s}} / 400 \times \mathrm{f}_{\mathrm{s}} / 800 \times \mathrm{f}_{\mathrm{s}}$ | 3.2 MHz to 19.2 MHz |
| 32 kHz to 48 kHz | $100 \times \mathrm{f}_{\mathrm{s}} / 200 \times \mathrm{f}_{\mathrm{s}} / 400 \times \mathrm{f}_{\mathrm{s}}$ | 3.2 MHz to 19.2 MHz |

Table 10. Master Clock Select (MCS) Bit Settings: MCLK, Ratio, and Frequency

| Input <br> Sample <br> Rate | Ratio/ MCLK | $\begin{aligned} & \text { Setting 0, } \\ & \text { b0000 } \end{aligned}$ | $\begin{aligned} & \text { Setting 1, } \\ & \text { b0001 } \end{aligned}$ | $\begin{aligned} & \text { Setting 2, } \\ & \text { b0010 } \end{aligned}$ | $\begin{aligned} & \text { Setting 3, } \\ & \text { b0011 } \end{aligned}$ | $\begin{aligned} & \text { Setting 4, } \\ & \text { b0100 } \end{aligned}$ | Setting 5, b0101 | Setting 6, b0110 | Setting 7, b0111 | $\begin{aligned} & \text { Setting 8, } \\ & \text { b1000 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 kHz | Ratio MCLK | $\begin{aligned} & \hline 256 \times \mathrm{fs}^{1} \\ & 2.048 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 512 \times \mathrm{fs} \\ & 4.096 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1024 \times \mathrm{fs}^{\prime} \\ & 8.192 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1536 \times \mathrm{fs} \\ & 12.288 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 2048 \times \mathrm{fs} \\ & 16.384 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 3072 \times \mathrm{fs}^{2} \\ & 24.576 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 400 \times \mathrm{f}_{\mathrm{s}} \\ & 3.20 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 800 \times \mathrm{fs}^{2} \\ & 6.40 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1600 \times \mathrm{fs} \\ & 12.80 \mathrm{MHz} \end{aligned}$ |
| 11.025 kHz | Ratio MCLK | $\begin{aligned} & \hline 256 \times \mathrm{fs}^{1} \\ & 2.822 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 512 \times \mathrm{f}_{\mathrm{s}} \\ & 5.6448 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 1024 \times \mathrm{f}_{\mathrm{s}} \\ & 11.2896 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1536 \times \mathrm{f}_{\mathrm{s}} \\ & 16.9344 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 2048 \times \mathrm{f}_{\mathrm{s}} \\ & 22.5792 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 3072 \times \mathrm{f}_{\mathrm{s}} \\ & 33.8688 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 400 \times \mathrm{f}_{\mathrm{s}} \\ & 4.41 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 800 \times \mathrm{f}_{\mathrm{s}} \\ & 8.82 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1600 \times \mathrm{f}_{\mathrm{s}} \\ & 17.64 \mathrm{MHz} \end{aligned}$ |
| 12 kHz | Ratio MCLK | $\begin{aligned} & 256 \times \mathrm{f}_{\mathrm{s}}{ }^{1} \\ & 3.072 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 512 \times \mathrm{fs}^{2} \\ & 6.144 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1024 \times \mathrm{fs} \\ & 12.288 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1536 \times \mathrm{fs} \\ & 18.432 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 2048 \times \mathrm{fs}^{2} \\ & 24.576 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 3072 \times \mathrm{fs}^{2} \\ & 38.864 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 400 \times \mathrm{fs}^{2} \\ & 4.80 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 800 \times \mathrm{fs}^{2} \\ & 9.60 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1600 \times \mathrm{fs} \\ & 19.20 \mathrm{MHz} \end{aligned}$ |
| 16 kHz | Ratio MCLK | $\begin{aligned} & 128 \times \mathrm{fs}^{1} \\ & 2.048 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 256 \times \mathrm{f}_{\mathrm{s}} \\ & 4.096 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 384 \times \mathrm{f}_{\mathrm{s}} \\ & 8.192 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 768 \times \mathrm{f}_{\mathrm{s}} \\ & 12.288 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1024 \times \mathrm{f}_{\mathrm{s}} \\ & 16.384 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1536 \times \mathrm{f}_{\mathrm{s}} \\ & 24.576 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 200 \times \mathrm{f}_{\mathrm{s}} \\ & 3.20 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 400 \times \mathrm{f}_{\mathrm{s}} \\ & 6.40 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 800 \times \mathrm{f}_{\mathrm{s}} \\ & 12.80 \mathrm{MHz} \end{aligned}$ |
| 22.05 kHz | Ratio MCLK | $\begin{aligned} & 128 \times \mathrm{f}_{\mathrm{s}}{ }^{1} \\ & 2.822 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 256 \times \mathrm{f}_{\mathrm{s}} \\ & 5.6448 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 512 \times \mathrm{f}_{\mathrm{s}} \\ & 11.2896 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 768 \times \mathrm{f}_{\mathrm{s}} \\ & 16.9344 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1024 \times \mathrm{f}_{\mathrm{s}} \\ & 22.5792 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1536 \times \mathrm{f}_{\mathrm{s}} \\ & 33.8688 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 200 \times \mathrm{f}_{\mathrm{s}} \\ & 4.41 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 400 \times \mathrm{f}_{\mathrm{s}} \\ & 8.82 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 800 \times \mathrm{f}_{\mathrm{s}} \\ & 17.64 \mathrm{MHz} \end{aligned}$ |
| 24 kHz | Ratio MCLK | $\begin{aligned} & 128 \times \mathrm{f}_{\mathrm{s}}^{1} \\ & 3.072 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 256 \times \mathrm{fs} \\ & 6.144 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 512 \times \mathrm{fs} \\ & 12.288 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 768 \times \mathrm{fs} \\ & 18.432 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1024 \times \mathrm{fs}^{2} \\ & 24.576 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1536 \times \mathrm{fs} \\ & 38.864 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 200 \times \mathrm{fs}^{2} \\ & 4.80 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 400 \times \mathrm{fs} \\ & 9.60 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 800 \times \mathrm{fs} \\ & 19.20 \mathrm{MHz} \end{aligned}$ |
| 32 kHz | Ratio MCLK | $\begin{aligned} & 64 \times \mathrm{f}_{\mathrm{s}}^{1} \\ & 2.048 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 128 \times \mathrm{fs}_{\mathrm{s}} \\ & 4.096 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 256 \times \mathrm{f}_{\mathrm{s}} \\ & 8.192 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 384 \times \mathrm{f}_{\mathrm{s}} \\ & 12.288 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 512 \times \mathrm{f}_{\mathrm{s}} \\ & 16.384 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 768 \times \mathrm{fs}_{\mathrm{s}} \\ & 24.576 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 100 \times \mathrm{f}_{\mathrm{s}} \\ & 3.20 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 200 \times \mathrm{f}_{\mathrm{s}} \\ & 6.40 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 400 \times \mathrm{f}_{\mathrm{s}} \\ & 12.80 \mathrm{MHz} \end{aligned}$ |
| 44.1 kHz | Ratio MCLK | $\begin{aligned} & 64 \times \mathrm{f}_{\mathrm{s}}{ }^{1} \\ & 2.822 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 128 \times \mathrm{f}_{\mathrm{s}} \\ & 5.6448 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 256 \times \mathrm{f}_{\mathrm{s}} \\ & 11.2896 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 384 \times \mathrm{f}_{\mathrm{s}} \\ & 16.9344 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 512 \times \mathrm{f}_{\mathrm{s}} \\ & 22.5792 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 768 \times \mathrm{f}_{\mathrm{s}} \\ & 33.8688 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 100 \times \mathrm{f}_{\mathrm{s}} \\ & 4.41 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 200 \times \mathrm{f}_{\mathrm{s}} \\ & 8.82 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 400 \times \mathrm{f}_{\mathrm{s}} \\ & 17.64 \mathrm{MHz} \end{aligned}$ |
| 48 kHz | Ratio MCLK | $\begin{aligned} & 64 \times \mathrm{fs}^{1} \\ & 3.072 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 128 \times \mathrm{fs}_{\mathrm{s}} \\ & 6.144 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 256 \times \mathrm{f}_{\mathrm{s}} \\ & 12.288 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 384 \times \mathrm{f}_{\mathrm{s}} \\ & 18.432 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 512 \times \mathrm{f}_{\mathrm{s}} \\ & 24.576 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 768 \times \mathrm{fs}_{\mathrm{s}} \\ & 38.864 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 100 \times \mathrm{f}_{\mathrm{s}} \\ & 4.80 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 200 \times \mathrm{f}_{\mathrm{s}} \\ & 9.60 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 400 \times \mathrm{f}_{\mathrm{s}} \\ & 19.20 \mathrm{MHz} \end{aligned}$ |

${ }^{1}$ When using MCS $=0 / 64 \mathrm{fs}$ mode, the chip automatically operates in low power mode.

## DIGITAL INPUT SERIAL AUDIO INTERFACE

It is capable of receiving stereo $\mathrm{I}^{2} \mathrm{~S}$, left justified, or right justified data. Mono, stereo, and multichannel PCM/TDM interface formats are available. The data and interface formats are selected by adjusting the SDATA_FMT and SAI bits in Register 0x02. Note that, when operating in right justified mode, the proper data width must be chosen. The BCLK signal does not have to be provided to the SSM2519. It can internally generate the appropriate BCLK signal. To operate without a BCLK, the BCLK pin should be tied to VDD or GND to select the appropriate BCLK rate for the SDATA input.

Table 11. BCLK Pin Connection Options

| BCLK Pin | Generation | BCLK Rate |
| :--- | :--- | :--- |
| Connected to External | External | Any |
| $\quad$ Clock Source |  |  |
| Tied to VDD | Internal | 16 bit clocks/channel |
| Tied to GND | Internal | 32 bit clocks/channel |

When the SSM2519 is set up in standalone mode, a subset of serial interface formats are available. Selection of these serial formats and input channel are determined by the LR_FORMAT pin.

Table 12. LR_FORMAT Pin Configuration Controls

## LR_FORMAT Pin Configuration

Tie to VDD
Tie to VDD Through $150 \mathrm{k} \Omega$
Tie to VDD Through $47 \mathrm{k} \Omega$
Tie to VDD Through $15 \mathrm{k} \Omega$ Tie to GND

Serial Format/Channel Select
$1^{2} S / l e f t ~ c h a n n e l ~$
Special gain case ${ }^{1}\left({ }^{2} \mathrm{~S} /\right.$ /left channel)
PCM/left channel
LJ/left channel
$1^{2} S /$ right channel

## CHANNEL MAPPING

Stereo audio formats and TDM formats with two, four, eight, or 16 channels are available. In these modes, the amplifier audio can be chosen from any of the available TDM slots using the CH_SEL bits in Register 0x04. For most digital interface formats, many of these options are not present. For example, in stereo modes, only Channel 0 and Channel 1 are valid, and in four-slot TDM mode, only Channel 0, Channel 1, Channel 2, and Channel 3 are valid.

## POWER SUPPLIES

The SSM2519 has two internal power supplies that must be provided. PVDD supplies power to the full-bridge power stage of MOSFETs and its associated drive, control, and protection circuitry. PVDD can operate from 2.5 V to 5.5 V and must be present to obtain audio output. Lowering the PVDD supply results in lower output power and correspondingly lower power consumption. This does not affect audio performance.
VDD provides power to the digital logic, analog components, and I/O circuitry. VDD can operate from 1.5 V to 3.6 V and must be provided to obtain audio output. Lowering the supply voltage results in lower power consumption, but does not result in lower audio performance.

[^0]
## POWER CONTROL

The IC starts up in software power-down mode, where all blocks except for the $\mathrm{I}^{2} \mathrm{C}$ interface are disabled. To fully power up the amplifier, clear SPWDN (Bit 0 of Register 0x00). In addition to the software power-down, the software master mute control (M_MUTE) is enabled at the initial state of the amplifier; therefore, no audio is output until Bit 0 of Register $0 \times 06$ is cleared.

The SSM2519 contains a smart power-down feature that, when enabled, analyzes the incoming digital audio and, if the audio is zero for 512 consecutive samples, regardless of sample rate, places the IC in the smart power-down state. In this state, all circuitry except the $I^{2} S$ ports are placed in a low power state. After this state is entered, the $I^{2} S$ input and master clock (MCLK) can be removed to place the part in its lowest power state. When a single nonzero input is received, the SSM2519 leaves this state and resumes normal operation.
The SSM2519 can also be powered down to its lowest power state by pulling the $\overline{\mathrm{SD}}$ pin low.

## POWER-ON RESET/VOLTAGE SUPERVISOR

The SSM2519 includes an internal power-on reset and voltage supervisor circuit. This circuit provides an internal reset to all circuitry during initial power-up. It also monitors the power supplies to the IC, mutes the output, and issues a reset when the voltages fall below the minimum operating range. This is done to ensure that no damage occurs due to low voltage operation and that no pops can occur under nearly any power removal condition.
A soft reset of the chip can be issued through $\mathrm{I}^{2} \mathrm{C}$ by setting Bit 7 of Register 0x00 (S_RST).

## LOW POWER MODES

Two low power modes are available. If DAC_LPM (Bit 5 of Register 0x01) is set, the digital-to-analog converter (DAC) runs at half speed, reducing the quiescent current. This half speed mode is also active when the MCS setting (Bits[4:1] of Register 0x00) is set to its lowest value ( $\mathrm{MCS}=0000$ ) because the slowest acceptable MCLK rates can only support half speed DAC operation.

If AMP_LPM (Bit 6 of Register 0x01) is set, the $\Sigma-\Delta$ modulator runs in a special mode that offers lower quiescent current when the output power is small, at the expense of slightly degraded audio performance.

## VOLUME CONTROL

The SSM2519 has a digital volume control. There are 255 levels available, providing a range from +24 dB to -71.25 dB in 0.375 dB increments. This is a soft volume control, meaning that the gain is adjusted continuously from one value to another. This continuously adjusted gain prevents the audible pop that occurs with an instantaneous gain adjustment.

## ANALOG GAIN

The SSM2519 has selectable digital and analog gain. Selection of these gains occurs via the GAIN pin. The analog gain settings are optimized for operation at $2.5 \mathrm{~V}, 3.6 \mathrm{~V}, 4.2 \mathrm{~V}$, or 5 V PVDD.

Table 13. GAIN Pin Configuration Control

| GAIN Pin <br> Configuration | Analog Gain/Digital Gain |
| :--- | :--- |
| Tie to VDD | 5 V optimized analog/0 dB digital gain |
| Tie to VDD <br> Through $150 \mathrm{k} \Omega$ | 5 V optimized analog/6 dB digital gain |
| Tie to VDD <br> Through $47 \mathrm{k} \Omega$ | 4.2 V optimized analog $/ 0 \mathrm{~dB}$ digital gain |
| Tie to VDD <br> Through $15 \mathrm{k} \Omega$ | 3.6 V optimized analog/-3 dB digital gain |
| Tie to GND | 3.6 V optimized analog/0 dB digital gain |

Table 14. Special Gain Case (LR_FORMAT Tied to VDD Through $150 \mathrm{k} \Omega$ ) GAIN Pin Configuration Control

| GAIN Pin <br> Configuration | Analog Gain/Digital Gain |
| :--- | :--- |
| Tie to VDD | 2.5 V optimized analog/-6.75 dB digital |
|  | gain |
| Tie to GND | 3.6 V optimized analog/0 dB digital gain |

## FAULT DETECTION AND RECOVERY

Two fault conditions are detected by the SSM2519 fault detection system: overcurrent and overtemperature. When either of these is detected, the amplifier shuts down and a readonly $\mathrm{I}^{2} \mathrm{C}$ bit is set to indicate the cause of the shutdown. The OC and OT fault indicators are Bit 6 and Bit 5, respectively, of Register 0x07. An autorecovery feature can be enabled for temperature faults, current faults, or both, depending on the state of ARCV (Bits[1:0] of Register 0x07).

## Data Sheet

## DIGITAL AUDIO FORMATS

## STEREO MODE

0x02[4:2], SAI = 0 (stereo: $\mathrm{I}^{2} \mathrm{~S}, \mathrm{LJ}, \mathrm{RJ}$ )
$0 \times 02[6: 5]$, SDATA_FMT $=0\left(\mathrm{I}^{2} \mathrm{~S}\right), 1(\mathrm{LJ}), 2$ (RJ 24-bit), 3 (RJ 16-bit)


Figure 26. Stereo Modes: $I^{2}$ S, Left Justified, and Right Justified

## TDM, 50\% DUTY CYCLE MODE

$0 x 02$ [4:2], SAI $=1$ ( 2 channels), 2 ( 4 channels), 3 ( 8 channels), 4 ( 16 channels)
$0 x 02$ [6:5], SDATA_FMT $=0\left(I^{2}\right.$ S), 1 (LJ), 2 (RJ 24-bit), 3 (RJ 16-bit)
0 x 03 [1], BCLK_EDGE $=0$ (rising BCLK edge used)
$0 x 03[6]$, LRCLK_MODE $=0(50 \%$ duty cycl LRCLK $)$
$0 x 03[3: 2]$, SLOT_WIDTH $=0$ ( 32 BCLK cycles), 1 ( 24 BCLK cycles), 2 ( 16 BCLK cycles)


Figure 27. TDM Modes with 50\% Duty Cycle LRCLK

## TDM, PULSE MODE

$0 x 02$ [4:2], SAI = 1 ( 2 channels), 2 ( 4 channels), 3 ( 8 channels), 4 ( 16 channels)
$0 x 02$ [6:5], SDATA_FMT $=0$ (I²S), 1 (LJ), 2 (RJ 24-bit), 3 (RJ 16-bit)
$0 x 03[1]$, BCLK_EDGE $=0$ (rising BCLK edge used)
$0 \times 03[6]$, LRCLK_MODE $=1$ (pulse mode LRCLK)
0x03[3:2], SLOT_WIDTH $=0$ ( 32 BCLK cycles), 1 ( 24 BCLK cycles), 2 ( 16 BCLK cycles)


Figure 28. TDM Modes with Pulse Mode LRCLK

## PCM, MULTICHANNEL MODE

$0 \times 02$ [4:2], SAI $=1$ ( 2 channels), 2 ( 4 channels), 3 ( 8 channels), 4 ( 16 channels)
$0 \times 02$ [6:5], SDATA_FMT $=0\left(I^{2} \mathrm{~S}\right), 1$ (LJ), 2 (RJ 24-bit), 3 (RJ 16-bit)
$0 \times 03$ [1], BCLK_EDGE $=1$ (falling BCLK edge used)
$0 \times 03[6]$, LRCLK_MODE $=1$ (pulse mode LRCLK)
$0 \times 03$ [3:2], SLOT_WIDTH $=0$ ( 32 cycles), 1 ( 24 cycles), 2 ( 16 cycles $)$


## PCM, MONO MODE

$0 \times 02$ [4:2], SAI = 5
$0 \times 02$ [6:5], SDATA_FMT $=0\left(\mathrm{I}^{2} \mathrm{~S}\right), 1$ (LJ), 2 (RJ 24-bit), 3 (RJ 16-bit)
$0 \times 03$ [1], BCLK_EDGE $=1$ (falling BCLK edge used)
$0 \times 03[6]$, LRCLK_MODE $=1$ (pulse mode LRCLK)


Figure 30. Mono PCM Modes

## I²C CONFIGURATION INTERFACE

## OVERVIEW

The SSM2519 supports a 2 -wire serial ( $\mathrm{I}^{2} \mathrm{C}$-compatible) microprocessor bus driving multiple peripherals. Two pins, serial data (SDA) and serial clock (SCL), carry information between the SSM2519 and the system I ${ }^{2} \mathrm{C}$ master controller. The SSM2519 is always a slave on the bus, meaning it cannot initiate a data transfer. Each slave device is recognized by a unique device address. The device address byte format is shown in Figure 31. The address resides in the first seven bits of the $\mathrm{I}^{2} \mathrm{C}$ write. The LSB (Bit 7) of this byte sets either a read or write operation.
Logic Level 1 corresponds to a read operation, and Logic Level 0 corresponds to a write operation. The full byte addresses are shown in Figure 31, where the subaddresses are automatically incremented at word boundaries and can be used for writing large amounts of data to contiguous memory locations. This increment happens automatically after a single word write, unless a stop condition is encountered. A data transfer is always terminated by a stop condition.
Both SDA and SCL should have a $2.2 \mathrm{k} \Omega$ pull-up resistor on the lines connected to them.

The device address is 0 x 70 .

| BIT 0 | BIT 1 | BIT 2 | BIT 3 | BIT 4 | BIT 5 | BIT 6 | BIT 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | R/W |

Figure 31. ${ }^{2}$ C Device Address Byte Format

## Addressing

Initially, each device on the $\mathrm{I}^{2} \mathrm{C}$ bus is in an idle state, monitoring the SDA and SCL lines for a start condition and the proper address. The $\mathrm{I}^{2} \mathrm{C}$ master initiates a data transfer by establishing a start condition, defined by a high-to-low transition on SDA while SCL remains high. This indicates that an address/data stream follows. All devices on the bus respond to the start condition and shift the next eight bits (the 7-bit address plus the $\mathrm{R} / \overline{\mathrm{W}}$ bit) MSB first. The device that recognizes the transmitted address responds by pulling the data line low during the ninth clock pulse. This ninth bit is known as an acknowledge bit. All other devices withdraw from the bus at this point and return to the idle condition. The $\mathrm{R} / \overline{\mathrm{W}}$ bit determines the direction of the data. A Logic 0 on the LSB of the first byte means that the master writes information to the peripheral, whereas a Logic 1 means that the master reads information from the peripheral after writing the subaddress and repeating the start address. A data transfer takes place until a stop condition is encountered. A stop condition occurs when SDA transitions from low to high while SCL is held high. The timing for the $\mathrm{I}^{2} \mathrm{C}$ port is shown in Figure 3.

Stop and start conditions can be detected at any stage during the data transfer. If these conditions are asserted out of sequence with normal read and write operations, the SSM2519 immediately jumps to the idle condition. During a given SCL high period, the user should issue only one start condition, one stop condition, or a single stop condition followed by a single start condition. If an invalid subaddress is issued by the user, the SSM2519 does not issue an acknowledge and returns to the idle condition. If the user exceeds the highest subaddress while in auto-increment mode, one of two actions is taken. In read mode, the SSM2519 outputs the highest subaddress register contents until the master device issues a no acknowledge, indicating the end of a read. A no acknowledge condition is where the SDA line is not pulled low on the ninth clock pulse of SCL. If the highest subaddress location is reached while in write mode, the data for the invalid byte is not loaded into any subaddress register, a no acknowledge is issued by the SSM2519, and the part returns to the idle condition.

## $I^{2} C$ Read and Write Operations

Figure 33 shows the timing of a single-word write operation. Every ninth clock, the SSM2519 issues an acknowledge by pulling SDA low.
Figure 34 shows the timing of a burst mode write sequence. This figure shows an example where the target destination registers are two bytes. The SSM2519 knows to increment its subaddress register every byte because the requested subaddress corresponds to a register or memory area with a byte word length.

The timing of a single-word read operation is shown in Figure 35. Note that the first $\mathrm{R} / \overline{\mathrm{W}}$ bit is 0 , indicating a write operation. This is because the subaddress still needs to be written to set up the internal address. After the SSM2519 acknowledges the receipt of the subaddress, the master must issue a repeated start command followed by the chip address byte with the $\mathrm{R} / \overline{\mathrm{W}}$ bit set to 1 (read). This causes the SSM2519 SDA to reverse and begin driving data back to the master. The master then responds every ninth pulse with an acknowledge pulse to the SSM2519.
Figure 36 shows the timing of a burst mode read sequence. This figure shows an example where the target destination registers are two bytes. The SSM 2519 knows to increment its subaddress register at every byte because the requested subaddress corresponds to a register or memory area with a byte word length.


Figure 33. Single-Word ${ }^{2}$ C Write Format


Figure 34. Burst Mode ${ }^{2} C$ Write Format


Figure 35. Single-Word $R^{2} C$ Read Format

| START <br> BIT | CHIP ADDRESS <br> R/ $\bar{W}=0$ | ACK BY <br> SLAVE | SUBADDRESS | ACK BY <br> SLAVE | START <br> BIT | CHIP ADDRESS <br> R/ $/ \bar{W}=1$ | ACK BY <br> SLAVE | DATA- <br> WORD 1 | ACK BY <br> MASTER | $\bullet \bullet \bullet$ | STOP <br> BIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Figure 36. Burst Mode $I^{2} C$ Read Format

REGISTER SUMMARY
Table 15. Register Summary


## REGISTER DETAILS

## SOFTWARE RESET AND MASTER SOFTWARE POWER-DOWN CONTROL REGISTER

Address: 0x00, Reset: 0x05, Name: PWR_CTRL
[7] S_RST (RW)
Software Reset
0 : Normal Operation
1: Software Reset
[6] RESERVED (RW) Reserved
[5] NO_BCLK (RW)
No BCLK Operational mode.
0: BCLK used as BCLK
1: MCLK is used as BCLK. No signal needed on BCLK pin.

[0] SPWDN (RW) Master Software Power-Down 0 : Normal Operation 1: Software Master Power-Down [4:1] MCS (RW) Master Clock Select 0000: 64xFs MCLK 0001: 128xFs MCLK 0010. 256xFs MCLK 0011: $384 \times$ FS MCLK 0100: 512xFs MCLK 0101: 768xFs MCLK 0110: 100xFs MCLK 0111: 200xFs MCLK 1000: 400xFs MCLK 1001: Reserved

Table 16. Bit Descriptions for PWR_CTRL

| Bits | Bit Name | Settings | Description | Reset | Access |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | S_RST | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | Software reset. The software reset bit resets all internal blocks, including $I^{2} \mathrm{C}$ registers, to their default states. <br> Normal operation Software reset | 0x0 | RW |
| 6 | RESERVED |  | Reserved. | 0x0 | RW |
| 5 | NO_BCLK | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | No BCLK operational mode. MCLK also used as BCLK. BCLK used as BCLK <br> MCLK used as BCLK. No signal needed on BCLK pin. | 0x0 | RW |
| [4:1] | MCS | 0000 <br> 0001 <br> 0010 <br> 0011 <br> 0100 <br> 0101 <br> 0110 <br> 0111 <br> 1000 <br> 1001 | Master clock select. MCS must be set according to the input MCLK ratio relative to the input sample frequency. Refer to Table 10. <br> $64 \times \mathrm{f}_{5}$ MCLK <br> $128 \times$ fs MCLK <br> $256 \times$ fs MCLK <br> $384 \times$ fs MCLK <br> $512 \times \mathrm{f}_{\mathrm{s}}$ MCLK <br> $768 \times$ fs MCLK <br> $100 \times$ fs MCLK <br> $200 \times f_{5}$ MCLK <br> $400 \times$ fs MCLK <br> Reserved | 0x2 | RW |
| 0 | SPWDN | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | Master software power-down. Software power-down puts all blocks except the $I^{2} C$ interface in a low power state. <br> Normal operation <br> Software master power-down | 0x1 | RW |

## EDGE SPEED, POWER, AND CLOCKING CONTROL REGISTER

Address: 0x01, Reset: 0x30, Name: SYS_CTRL


Table 17. Bit Descriptions for SYS_CTRL

| Bits | Bit Name | Settings | Description | Reset | Access |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | HPF_EN |  | DC blocking high-pass filter enable. The SSM2519 contains a selectable high-pass filter. The -3 dB frequency is at 6 Hz with a 48 kHz sample rate. This frequency increases linearly with lower sample rates. <br> High-pass filter off <br> High-pass filter on | 0x0 | RW |
| 6 | AMP_LPM | $\begin{array}{r} 0 \\ 1 \\ \hline \end{array}$ | Amplifier low power mode. <br> Normal operation <br> Low power (return to zero) Class-D mode | $0 \times 0$ | RW |
| 5 | DAC_LPM |  | DAC low power mode. <br> Normal operation Low power operation mode. DAC runs at half speed. | 0x1 | RW |
| 4 | APWDN_EN |  | Auto power-down enable. Auto power-down automatically puts the IC in a low power state when 2048 consecutive zero input samples have been received. <br> Auto power-down disabled <br> Auto power-down enabled | 0x1 | RW |
| [3:2] | EDGE | $\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$ | Edge rate control. This controls the edge speed of the power stage. The low EMI operation mode reduces the edge speed, lowering EMI and power efficiency. <br> Normal operation <br> Lower EMI mode operation <br> Lower EMI mode operation <br> Lowest EMI mode operation | $0 \times 0$ | RW |
| 1 | AMCS | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | Auto MCLK select. <br> Master clock rate determined by MCS bits in Register 0x00 <br> Master clock rate automatically detected | 0x0 | RW |
| 0 | ASR |  | Autosample rate. <br> Sample rate setting determined by FS bit in Register 0x02 Autosample and MCLK rate detection enabled | 0x0 | RW |

## SERIAL AUDIO INTERFACE AND SAMPLE RATE CONTROL REGISTER

Address: 0x02, Reset: 0x02, Name: SAI_FMT1
[7] RESERVED (RW) Reserved
[6:5] SDATA_FMT (RW) Serial Data Format
00: I2S, BCLK delay by 1
01: Left Justified
10: Right Justified 24-Bit Data
11: Right Justified 16-Bit Data

[1:0] FS (RW)
Sample Rate Selection
$00: 8 \mathrm{kHz}$ to 12 kHz
01: 16 kHz to 24 kHz
10: 32 kHz to 48 kHz
11: Reserved
[4:2] SAI (RW)
Serial Audio Interface Format
000: Stereo: $12 \mathrm{~S}, \mathrm{LJ}, \mathrm{RJ}$
001: TDM2
010: TDM4
011: TDM8
100: TDM16
101: Mono PCM
110: Reserved
111: Reserved

Table 18. Bit Descriptions for SAI_FMT1

| Bits | Bit Name | Settings | Description | Reset | Access |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | RESERVED |  | Reserved. | 0x0 | RW |
| [6:5] | SDATA_FMT | $\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$ | Serial data format. <br> $1^{2} S, B C L K$ delay by 1 <br> Left justified <br> Right justified 24-bit data <br> Right justified 16-bit data | 0x0 | RW |
| [4:2] | SAI |  | Serial audio interface format. <br> Stereo: $I^{2} \mathrm{~S}, \mathrm{LJ}, \mathrm{RJ}$ <br> TDM2 <br> TDM4 <br> TDM8 <br> TDM16 <br> Mono PCM <br> Reserved <br> Reserved | 0x0 | RW |
| [1:0] | FS | 00 01 10 11 | Sample rate selection. <br> 8 kHz to 12 kHz <br> 16 kHz to 24 kHz <br> 32 kHz to 48 kHz <br> Reserved | 0x2 | RW |

## SERIAL AUDIO INTERFACE CONTROL REGISTER

Address: 0x03, Reset: 0x00, Name: SAI_FMT2


Table 19. Bit Descriptions for SAI_FMT2

| Bits | Bit Name | Settings | Description | Reset | Access |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | BCLK_GEN | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | BCLK internal generation. When BCLK_GEN is enabled, an internally generated BCLK is used. Therefore, routing the BCLK signal to the pin is not required. <br> External BCLK used <br> Internally generated BCLK used | 0x0 | RW |
| 6 | LRCLK_MODE | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | LRCLK mode selection for TDM operation. 50\% duty cycle LRCLK <br> Pulse mode LRCLK | 0x0 | RW |
| 5 | LRCLK_POL | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | LRCLK polarity control. Normal LRCLK operation Inverted LRCLK operation | $0 \times 0$ | RW |
| 4 |  | 0 <br> 1 | SDATA bit stream order. MSB first SDATA LSB first SDATA | 0x0 | RW |
| [3:2] | SLOT_WIDTH | $\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$ | BCLK cycles per frame in TDM modes select. <br> 32 BCLK cycles per slot <br> 24 BCLK cycles per slot <br> 16 BCLK cycles per slot <br> Reserved | 0x0 | RW |
| 1 | BCLK_EDGE | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | BCLK active edge select. Rising BCLK edge used Falling BCLK edge used | 0x0 | RW |
| 0 | RESERVED |  | Reserved. | 0x0 | RW |

## CHANNEL MAPPING CONTROL REGISTER

Address: 0x04, Reset: 0x00, Name: CH_SEL
Note that not all the settings of CH_SEL are available in all serial interface modes. For example, in stereo and TDM2 modes, only Setting 0000 (Channel 0) and Setting 0001
(Channel 1) are valid because these modes can only contain two channels. In TDM4, Setting 0000 to Setting 0011 are supported. In TDM8, Setting 0000 to Setting 0111 are supported. In TDM16, Setting 0000 to Setting 1111 are supported.


Table 20. Bit Descriptions for CH_SEL

| Bits | Bit Name | Settings | Description | Reset | Access |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [7:4] | RESERVED |  | Reserved. | 0x0 | RW |
| [3:0] | CH_SEL | 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 | Channel mapping select. Select input SDATA channel to map to left channel output. <br> Channel 0 from SAI to output <br> Channel 1 from SAI to output <br> Channel 2 from SAI to output <br> Channel 3 from SAI to output <br> Channel 4 from SAI to output <br> Channel 5 from SAI to output <br> Channel 6 from SAI to output <br> Channel 7 from SAI to output <br> Channel 8 from SAI to output <br> Channel 9 from SAI to output <br> Channel 10 from SAI to output <br> Channel 11 from SAI to output <br> Channel 12 from SAI to output <br> Channel 13 from SAI to output <br> Channel 14 from SAI to output <br> Channel 15 from SAI to output | 0x0 | RW |

## VOLUME CONTROL REGISTER

Address: 0x05, Reset: 0x40, Name: VOL_CTRL
[7:0] VOL (RW)


Volume Control 00000000: +24dB 00000001: +23.625 dB 00000010: +23.35 dB 00000011: +22.875dB 00000100: +22.5dB 00000101: Decreasing in 0.375 dB Steps

00111111: +0.375 dB
01000000: 0
01000001: -0.375dB
01000010: Decreasing in 0.375 dB Steps

11111101: -70.875dB
11111110: -71.25 dB
11111111: Mute

Table 21. Bit Descriptions for VOL_CTRL

| Bits | Bit Name | Settings | Description | Reset | Access |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [7:0] | VOL | 00000000 00000001 00000010 00000011 00000100 00000101 00111111 01000000 01000001 01000010 11111101 11111110 11111111 |  | 0x40 | RW |

## GAIN AND MUTE CONTROL REGISTER

Address: 0x06, Reset: 0x11, Name: GAIN_CTRL
[7] AMUTE (RW) Automatic Mute Enable
0: Auto Mute Enabled
1: Auto Mute Disabled
[6] RESERVED (RW)
Reserved
[5:4] ANA_GAIN (RW) Analog Gain Control
00: 2V Gain
01: 3.6 V Gain
10: 4.2V Gain
11: 5 V Gain

Table 22. Bit Descriptions for GAIN_CTRL

| Bits | Bit Name | Settings | Description | Reset | Access |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | AMUTE |  | Automatic mute enable. When the automatic mute function is enabled, after 2048 consecutive zero input samples have been received, the outputs are automatically muted. <br> Automute enabled <br> Automute disabled | 0x0 | RW |
| 6 | RESERVED |  | Reserved. | 0x0 | RW |
| [5:4] | ANA_GAIN | 00 01 10 11 | Analog gain control. This controls the analog gain of the Class-D modulator. There are two settings optimized for 3.6 V operation from a lithium ion battery and for 5 V operation. <br> 2 V gain <br> 3.6 V gain <br> 4.2 V gain <br> 5 V gain | 0x1 | RW |
| [3:1] | RESERVED |  | Reserved. | 0x0 | RW |
| 0 | M_MUTE | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | Master mute control. Setting the master mute control bit soft-mutes both channels. <br> Normal operation <br> Master mute | 0x1 | RW |

## FAULT CONTROL REGISTER

Address: 0x07, Reset: 0x0C, Name: FAULT_CTRL1
[7] RESERVED (RW)
Reserved
[6] OC (R)
Overcurrent Fault
0: Normal Operation
1: Overcurrent Fault
[5] OT (R)
Overtemperture Fault Status

[1:0] ARCV (RW)
Autofault Recovery Control
00: Autofault Recovery for Overtemperature and
Overcurrent Faults
01: Autofault Recovery for Overtemperature Fault Only

0 : Normal Operation
1: Overtemperature Fault
: Autofault Recovery for
Overcurrent Fault Only
11: No Autofault Recovery
[3:2] MAX_AR (RW)
Maximum Fault recovery Attempts
00: 1 Autorecovery Attempt
01: 3 Autore covery Attempts
10: 7 Autorecovery Attempts
11: Unlimited Autorecovery
Attempts
[4] MRCV (W)
Manual Fault Recovery
0: Normal Operation
1: Writing of 1 will cause a manual fault recovery attempt when ARCV $=11$

Table 23. Bit Descriptions for FAULT_CTRL1

| Bits | Bit Name | Settings | Description | Reset | Access |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | RESERVED |  | Reserved. | 0x0 | RW |
| 6 | OC | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | Overcurrent fault. <br> Normal operation Overcurrent fault | 0x0 | R |
| 5 | OT | 0 | Overtemperture fault status. Normal operation Overtemperature fault | 0x0 | R |
| 4 | MRCV |  | Manual fault recovery. <br> Normal operation <br> Writing Logic 1 causes a manual fault recovery attempt when ARCV $=11$ | 0x0 | W |
| [3:2] | MAX_AR | $\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$ | Maximum fault recovery attempts. The maximum automatic fault recovery bit determines how many attempts at autorecovery are performed. <br> One autorecovery attempt <br> Three autorecovery attempts <br> Seven autorecovery attempts <br> Unlimited autorecovery attempts | 0x3 | RW |
| [1:0] | ARCV | $\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$ | Autofault recovery control. <br> Autofault recovery for overtemperature and overcurrent faults Autofault recovery for overtemperature fault only <br> Autofault recovery for overcurrent fault only <br> No autofault recovery | 0x0 | RW |

## OUTLINE DIMENSIONS



Figure 37. 12-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-12-6)
Dimensions shown in millimeters

ORDERING GUIDE

| Model $^{1}$ | Temperature Range | Package Description | Package Option | Branding |
| :--- | :--- | :--- | :--- | :--- |
| SSM2519ACBZ-R7 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 12-Ball Wafer Level Chip Scale Package [WLCSP] | CB-12-6 | Y4B |
| SSM2519ACBZ-RL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 12-Ball Wafer Level Chip Scale Package [WLCSP] | CB-12-6 | Y4B |
| EVAL-SSM2519Z |  | Evaluation Board |  |  |

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Audio IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
LM4906MMBD LM4935RLEVAL LME49710NABD LME49740MABD LME49740NABD LME49860MABD LME49870MABD EVALAD1940AZ EVAL-ADAU1401AEBZ SRC4382EVM-PDK TLV320AIC36EVM-K TPA5052EVM TPA6136A2YFFEVM LM4562HABD LM4906LDBD LM4923LQBD LM4992SDBD LME49710MABD LME49713MABD LME49860NABD MAX98300EVKIT+WLP MAX9738EVKIT+ MAX98358EVSYS\#WLP MAX9723DEVKIT+ EVAL-ADAV803EBZ LM4809MBD LM4674TLBD CDBWM8725-M-1 CDBWM8533-M-1 EV_ICS-40740-FX SDCK3 PIM524 MAX9723DEVCMODU+ DEV-17737 MAX9850EVCMOD2\# EVALAHNBIM69D130V01TOBO1 1063 TAS5756MDCAEVM TLV320ADC3101EVM-K TLV320AIC3007EVM-K TLV320AIC3105EVM-K TLV320AIC3253EVM-K TPA2016D2EVM TPA2035D1EVM TPA2051D3YFFEVM TPA3107D2EVM TPA6120A2EVM TPA6132A2EVM2 MIKROE-2454 1381


[^0]:    ${ }^{1}$ See Table 14.

