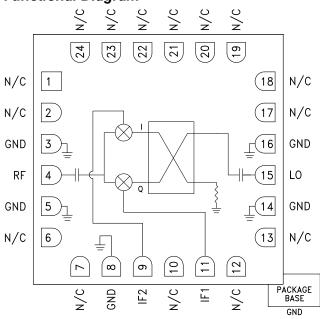


GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Typical Applications

The HMC1042LC4 is Ideal for:

- · Point-to-Point Radio
- · Point-to-Multi-Point Radio
- · Test Equipment & Sensors
- · Military End Use


Features

Wide IF Bandwidth: DC - 3.5 GHz

Image Rejection: 30 dBc LO to RF Isolation: 40 dB High Input IP3: +22 dBm

24 Lead 4 x 4 mm SMT Package: 16 mm²

Functional Diagram

General Description

The HMC1042LC4 is a compact I/Q MMIC mixer in a leadless "Pb free" SMT package, which can be used as either an Image Reject Mixer or a Single Sideband Upconverter. The mixer utilizes two standard Hittite double balanced mixer cells and a 90° hybrid fabricated in a GaAs MESFET process. A low frequency quadrature hybrid was used to produce a 2000 MHz USB IF output. This product is a much smaller alternative to hybrid style Image Reject Mixersand Single Sideband Upconverter assemblies. The HMC1042LC4 eliminates the need for wire bonding and allows the use of surface mount manufacturing techniques.

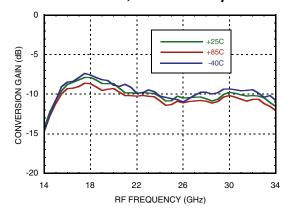
Electrical Specifications, $T_A = +25$ °C, IF= 2 GHz, USB, LO = +15 dBm^[1]

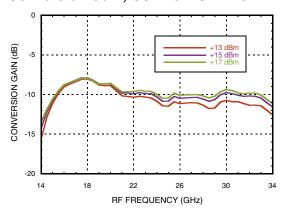
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF/LO	15 - 25		25 - 33.5			GHz	
Frequency Range, IF		DC - 3.5			DC - 3.5		GHz
Conversion Loss (As IRM)		9	12		11	14	dB
Image Rejection	16	24		16	30		dB
LO to RF Isolation	35	40		33	43		dBc
LO to IF Isolation		35			45		dB
IP3 (Input)		20			22		dBm
Amplitude Balance [2] [3]		±0.5			±0.5		dB
Phase Balance [2] [3]		±2.5			±2.5		Deg

^[1] Unless otherwise noted, all measurements performed as downconverter.

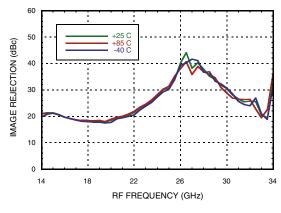
^[2] Data taken without external 90° hybrid.

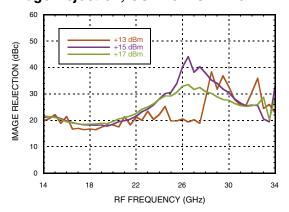
^[3] Data taken with IF = 100 MHz

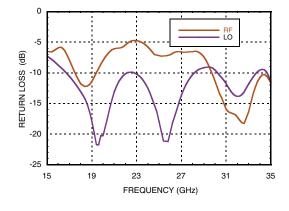


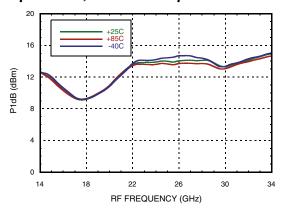

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 2000 MHz


Conversion Gain, USB vs. Temperature


Conversion Gain, USB vs. LO Drive

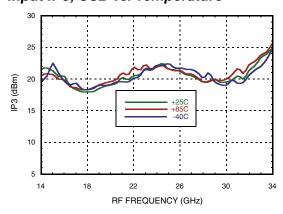

Image Rejection, USB vs. Temperature

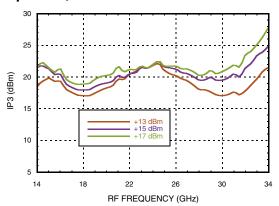

Image Rejection, USB vs. LO Drive

Return Loss [1]

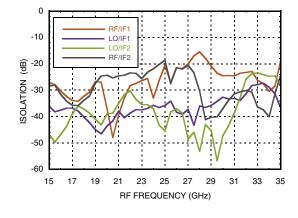
Input P1dB, USB vs. Temperature

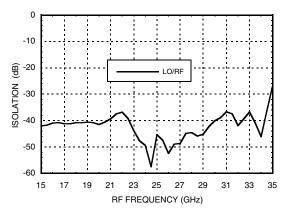
[1] Data taken without external 90° hybrid.

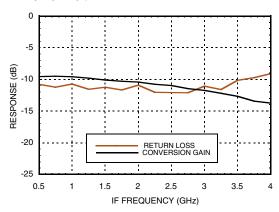


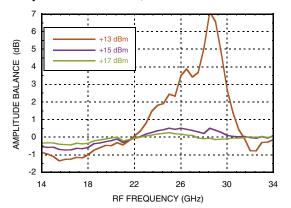

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 2000 MHz


Input IP3, USB vs. Temperature


Input IP3, USB vs LO Drive


Isolation

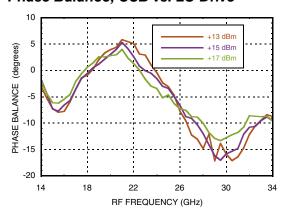

LO/RF Isolation

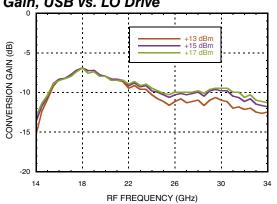
IF Bandwidth [1]

Amplitude Balance, USB vs. LO Drive [1] [2]

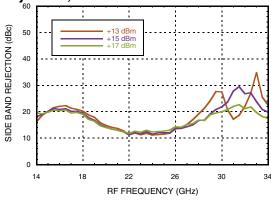
[1] Data taken without external 90° hybrid.

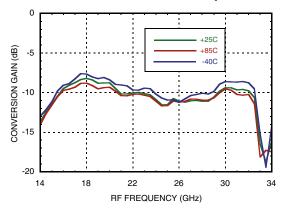
[2] Data taken with IF = 100 MHz.

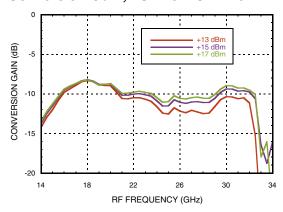


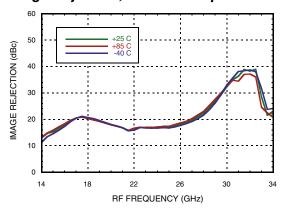

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 2000 MHz


Phase Balance, USB vs. LO Drive [1] [2]


Upconverter Performance Conversion Gain. USB vs. LO Drive

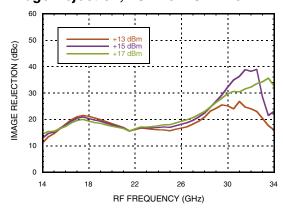

Upconverter Performance Sideband Rejection, USB vs. LO Drive

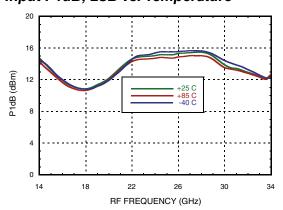

Conversion Gain, LSB vs. Temperature

Conversion Gain, LSB vs. LO Drive

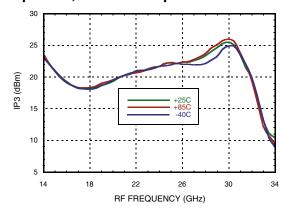
Image Rejection, LSB vs. Temperature

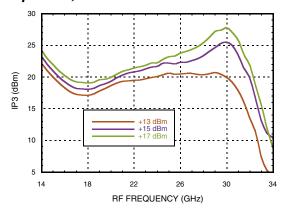
- [1] Data taken without external 90° hybrid.
- [2] Data taken with IF = 100 MHz.

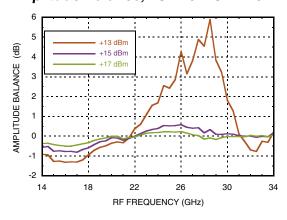


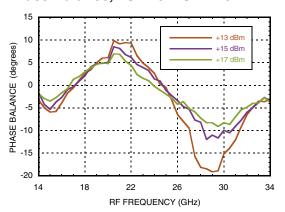

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 2000 MHz


Image Rejection, LSB vs. LO Drive


Input P1dB, LSB vs. Temperature

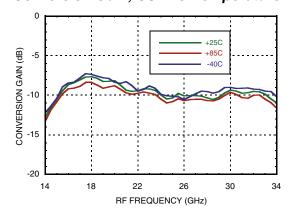

Input IP3, LSB vs. Temperature

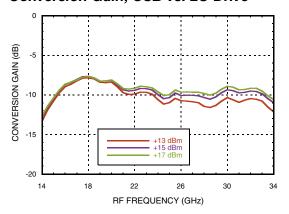

Input IP3, LSB vs LO Drive

Amplitude Balance, LSB vs. LO Drive [1] [2]

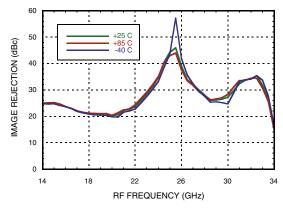
Phase Balance, LSB vs. LO Drive [1] [2]

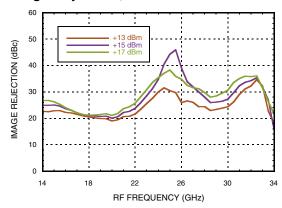
- [1] Data taken without external 90° hybrid.
- [2] Data taken with IF = 100 MHz.

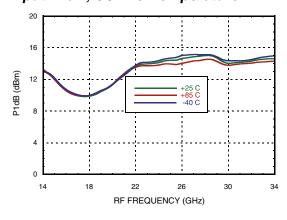


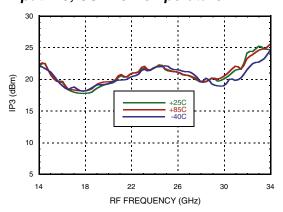

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 1000 MHz


Conversion Gain, USB vs. Temperature

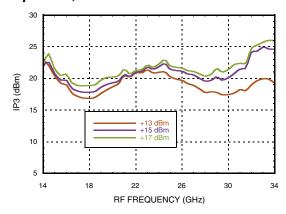

Conversion Gain, USB vs. LO Drive

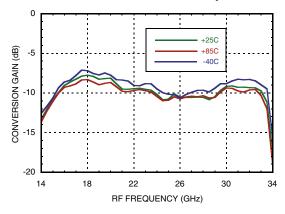

Image Rejection, USB vs. Temperature


Image Rejection, USB vs. LO Drive

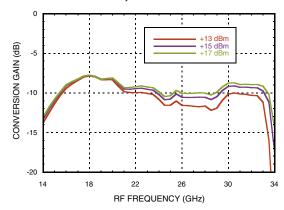
Input P1dB, USB vs. Temperature

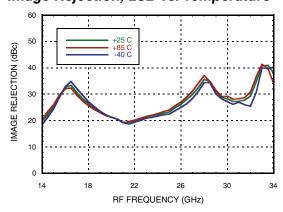
Input IP3, USB vs. Temperature





GaAs MMIC I/Q MIXER 15 - 33.5 GHz


Data Taken As IRM with External IF 90° Hybrid, IF = 1000 MHz
Input IP3, USB vs LO Drive


Conversion Gain, LSB vs. Temperature

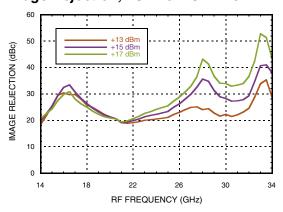
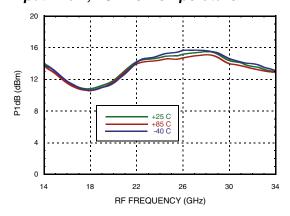
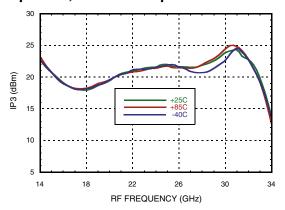

Conversion Gain, LSB vs. LO Drive

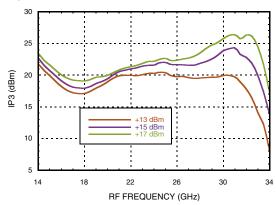
Image Rejection, LSB vs. Temperature

Image Rejection, LSB vs. LO Drive



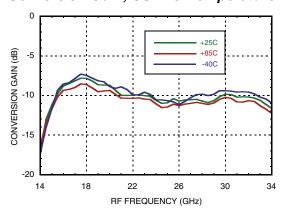

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

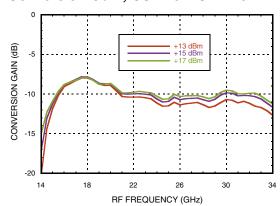
Data Taken As IRM with External IF 90° Hybrid, IF = 1000 MHz


Input P1dB, LSB vs. Temperature

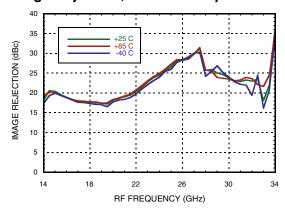
Input IP3, LSB vs. Temperature

Input IP3, LSB vs LO Drive




GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 2500 MHz


Conversion Gain, USB vs. Temperature

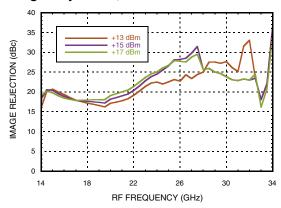
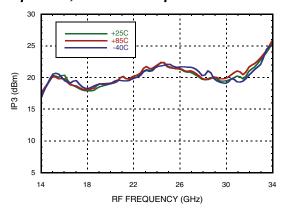
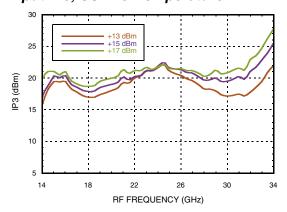

Conversion Gain, USB vs. LO Drive

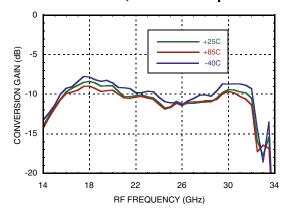
Image Rejection, USB vs. Temperature


Image Rejection, USB vs. LO Drive

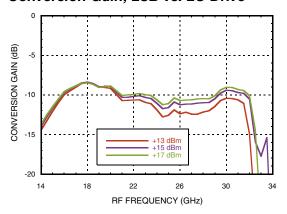
Input P1dB, USB vs. Temperature

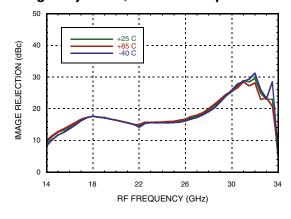
Input IP3, USB vs. Temperature





GaAs MMIC I/Q MIXER 15 - 33.5 GHz


Data Taken As IRM with External IF 90° Hybrid, IF = 2500 MHz Input IP3, USB vs. Temperature


Conversion Gain, LSB vs. Temperature

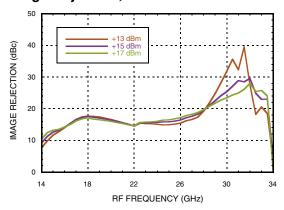
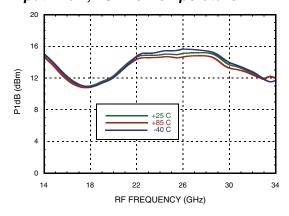
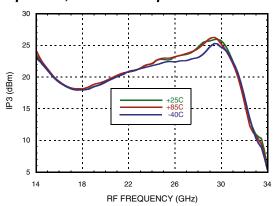

Conversion Gain, LSB vs. LO Drive

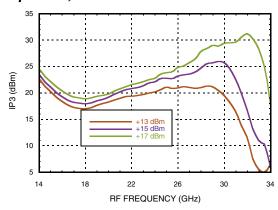
Image Rejection, LSB vs. Temperature

Image Rejection, LSB vs. LO Drive




GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Data Taken As IRM with External IF 90° Hybrid, IF = 2500 MHz


Input P1dB, LSB vs. Temperature

Input IP3, LSB vs. Temperature

Input IP3, LSB vs LO Drive

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Harmonics of LO

nLO Spur at RF Port			
1	2	3	
43	40	45	
41	50	Х	
44	44	Х	
44	Х	Х	
36	Х	Х	
	1 43 41 44 44	1 2 43 40 41 50 44 44 44 X	

LO = + 15 dBm

Values in dBc below LO level measured at RF Port.

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0		14	34	25	Х
1	21	Х	38	58	66
2	81	82	63	64	85
3	67	79	84	82	88
4	Х	65	76	85	89

RF = 25 GHz @ -10 dBm

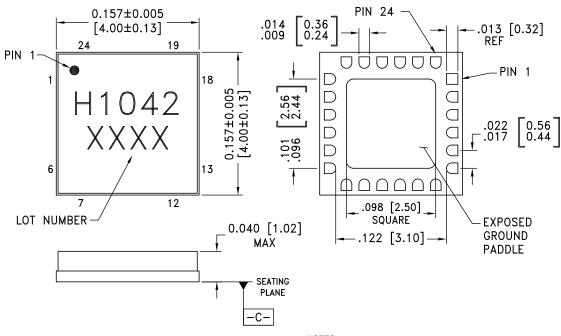
LO = 23 GHz @ +11 dBm

Data taken without IF hybrid

All values in dBc below IF power level

Absolute Maximum Ratings

RF / IF Input (LO = +18 dBm)	+18 dBm
LO Drive	+20 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 5.0 mW/°C above 85 °C)	328 mW
Thermal Resistance (R _{TH}) (junction to package bottom)	198 °C/W
Storage Temperature	-65 to +125 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A



GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Outline Drawing

BOTTOM VIEW

NOTES:

- PACKAGE BODY MATERIAL: ALUMINA.
- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER NICKEL.
- 3. DIMENSIONS ARE IN INCHES (MILLIMETERS).
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 MM DATUM C -
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

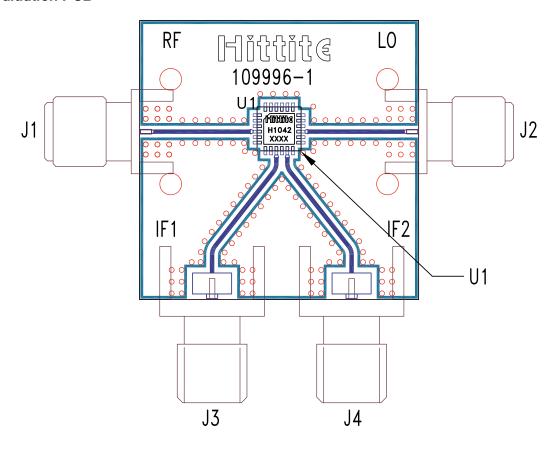
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC1042LC4	Alumina, White	Gold over Nickel	MSL3 [1]	H1042 XXXX

^[1] Max peak reflow temperature of 260 $^{\circ}\text{C}$

[2] 4-Digit lot number XXXX

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 2, 6, 7, 10, 12, 13, 17-24	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3, 5, 8, 14, 16	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.	○ GND —
4	RF	This pin is AC coupled and matched to 50 Ohms.	RF ○
9	IF2	This pin is DC coupled. For application not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has	IF1,IF2
11	IF1	been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source/sink more than 3 mA of current or product non-function and possible product failure will result.	
15	LO	This pin is AC coupled and matched to 50 Ohms from 15 to 33.5 GHz	LO O

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC1042LC4 [1]

Item	Description	
J1, J2	PCB Mount SMA RF Connector, SRI	
J3 - J4	PCB Mount SMA Connector, Johnson	
U1	HMC1042LC4	
PCB [2]	109996-1 Evaluation Board	

[1] Reference this number when ordering complete evaluation PCB $\,$

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

I/Q MIXER - SMT

É

ANALOGDEVICES

GaAs MMIC I/Q MIXER 15 - 33.5 GHz

Notes

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Mixer category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

 M80C
 HMC337-SX
 F1763EVBI
 mamx-009646-23dbml
 HMC339-SX
 F1751NBGI
 CSM5T
 CHR3664-QEG
 NJM2552V-TE1

 HMC220BMS8GE
 HMC8192-SX
 LTC5569IUF#PBF
 HMC220BMS8GETR
 MAX2055EUP+TD
 M85C
 M74C
 CSM4TH
 HMC8191-SX

 CMD251C3
 MD-174-PIN
 CMD253C3
 HMC8192LG
 HMC553AG-SX
 HMC521A-SX
 HMC521ACHIPS
 HMC558A
 HMC553AG

 HMC8191
 MAMX-011023-SMB
 EMRS-1TR
 ADL5355ACPZ-R7
 HMC399MS8TR
 HMC141LH5
 HMC333TR
 HMC214MS8TR

 HMC175MS8TR
 HMC1043LC3TR
 F0552NLGI
 F1701NBGI
 F0502NLGI
 F1763NBGI
 MDS-189-PIN
 MAX2042AETP+
 MAX2032ETP+

 MAX2043ETX+
 CSM2-13
 CSM4T
 HMC1056LP4BETR
 LTC5510IUF#PBF
 LTC5553IUDB#TRMPBF