

GaAs, pHEMT, MMIC, Low Noise Amplifier, 0.3 GHz to 20 GHz

Data Sheet HMC1049LP5E

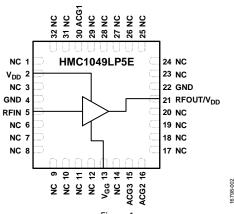
FEATURES

Low noise figure: 1.8 dB P1dB output power: 14.5 dBm P_{SAT} output power: 17.5 dBm

High gain: 15 dB Output IP3: 29 dBm

Supply voltage: $V_{DD} = 7 \text{ V}$ at 70 mA 50 Ω matched input/output (I/O)

32-lead, 5 mm × 5 mm LFCSP package: 25 mm²


APPLICATIONS

Test instrumentation
High linearity microwave radios
VSAT and SATCOM
Military and space

GENERAL DESCRIPTION

The HMC1049LP5E is a GaAs MMIC low noise amplifier (LNA) that operates between 0.3 GHz and 20 GHz. This LNA provides 15 dB of small signal gain, 1.8 dB noise figure, and an IP3 output of 29 dBm, yet requires only 70 mA from a 7 V supply. The P1dB output power of 14.5 dBm enables the LNA to function as a local oscillator (LO) driver for balanced, I/Q, or

FUNCTIONAL BLOCK DIAGRAM

Fiaure 1.

image rejection mixers. V_{DD} can also be applied to Pin 21, although Pin 21 requires a bias tee with $V_{DD}=4$ V. The HMC1049LP5E amplifier I/Os are internally matched to 50 Ω , and the device is supplied in a compact, leadless 5 mm \times 5 mm LFCSP package.

TABLE OF CONTENTS

to meet the styles and standards of Analog Devices, Inc.

Features	Pin Configuration and Function Descriptions5
Applications1	Interface Schematics6
Functional Block Diagram	Typical Performance Characteristics7
General Description1	Evaluation Printed Circuit Board12
Revision History	Packaging and Ordering Information14
Specifications	Outline Dimensions14
Absolute Maximum Ratings 4	Ordering Guide14
ESD Caution4	
REVISION HISTORY	
5/2018—Rev. A to Rev. B	Updated FormatUniversal
Changed HMC1049 to HMC1049LP5EThroughout	Changes to General Description1
Changes to Features Section and General Description Section . 1	Change to Table 2, Thermal Resistance Parameter Column4
Change to Figure 27 Caption and Figure 28 Caption 10	Added Figure 25
Updated Outline Dimensions	Changes to Table 45
Changes to Ordering Guide	Moved Figure 3 to Figure 9 to Interface Schematics Section6
	Change to Figure 8 and Figure 96
11/2014—Rev. 01.1213 to Rev. A	Changes to Figure 36
	Changes to rigure 30

SPECIFICATIONS

 $T_{\rm A}$ = 25°C, $V_{\rm DD}$ = 7 V, $I_{\rm DD}$ = 70 $mA^{\rm 1}.$

Table 1.

Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
FREQUENCY RANGE	0.3		1	1		14	14		20	GHz
GAIN	13.5	16.5		12	15		10	13		dB
Gain Variation Over Temperature		0.006			0.019			0.017		dB/°C
NOISE FIGURE		2.5	3.5		1.8	2.5		2.7	4.0	dB
RETURN LOSS										
Input		15			13			14		dB
Output		8			15			13		dB
OUTPUT										
Output Power for 1 dB Compression (P1dB)		15			14.5			13		dBm
Saturated (P _{SAT})		18			17.5			16		dBm
Output Third-Order Intercept (IP3) ²		31			29			26		dBm
TOTAL SUPPLY CURRENT		70			70			70		mA

 $^{^1}$ Adjust V_{GG} between -2 V to 0 V to achieve I_{DD} = 70 mA typical. 2 Measurement taken at $P_{OUT}/tone$ = 8 dBm.

ABSOLUTE MAXIMUM RATINGS

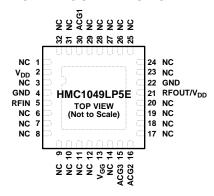
Table 2.

Parameter	Rating
Drain Bias Voltage (V _{DD})	10 V
Drain Bias Voltage (RF Out/V _{DD})	7 V
RF Input Power	18 dBm
Gate Bias Voltage, V _{GG}	−2 V to +0.2 V
Channel Temperature	175°C
Continuous P_{DISS} (T = 85°C) (Derate 37.1 mW/°C Above 85°C)	3.34 W
Thermal Resistance (Channel to Ground Paddle)	26.9°C/W
Temperature	
Storage Temperature	−65°C to +150°C
Operating Temperature	−40°C to +85°C
ESD Sensitivity (HBM)	Class 1A

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 3. Typical Supply Current vs. V_{DD}

V _{DD} (V)	I _{DD} ¹ (mA)
5	70
6	70
7	70


 $^{^{1}}$ Adjust V_{GG} to achieve $I_{DD} = 70$ mA.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

Figure 2. Pin Configuration Diagram

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description ¹
1, 3, 6 to 12, 14, 17 to 20, 23 to 29, 31, 32	NC	No Connect. These pins are not connected internally; however, all data was measured with these pins connected to RF/dc ground externally (see the Typical Performance Characteristics section for data plots).
5	RFIN	RF Input. This pin is dc-coupled and matched to 50 Ω .
2	V_{DD}	Power Supply Voltage for the Amplifier. External bypass capacitors (100 pF and 0.01 μF) are required.
30	ACG1	Low Frequency Termination. An external bypass capacitor of 100 pF is required.
21	RFOUT/V _{DD}	RF Output/Alternate Power Supply Voltage for the Amplifier. An external bias tee is required when used as alternative V_{DD} . This pin is dc-coupled and matched to 50Ω .
15, 16	ACG2, ACG3	Low Frequency Termination. External bypass capacitors of 100 pF are required.
13	V_{GG}	Gate Control for Amplifier. Adjust the voltage to achieve $I_{DD} = 70$ mA. External bypass capacitors of 100 pF, 0.01 μ F, and 4.7 μ F are required.
4, 22	GND	Ground. Connect Pin 4 and Pin 22 to RF/dc ground.
0	EP	Exposed Pad. The exposed ground paddle must be connected to RF/dc ground.

¹ See the Interface Schematics section for pin interfaces.

NOTES

1. NC = NO CONNECT. THESE PINS ARE NOT CONNECTED INTERNALLY; HOWEVER, ALL DATA WAS MEASURED WITH THESE PINS CONNECTED TO RF/DC GROUND EXTERNALLY.

2. EXPOSED PAD. THE EXPOSED GROUND PADDLE MUST BE CONNECTED TO RF/DC GROUND.

INTERFACE SCHEMATICS

Figure 3. V_{DD} Interface

Figure 4. GND Interface

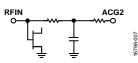


Figure 5. RFIN Interface

Figure 6. V_{GG} Interface

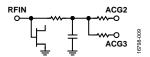


Figure 7. ACG2 and ACG3 Interface

Figure 8. RFOUT/V_{DD} Interface

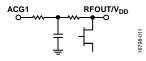


Figure 9. ACG1 Interface

TYPICAL PERFORMANCE CHARACTERISTICS

Data taken with $V_{\rm DD}$ applied to Pin 2, $V_{\rm DD}$ = 7 V.

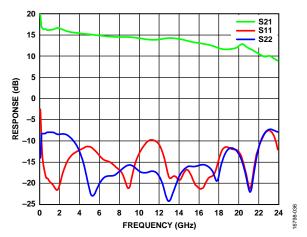


Figure 10. Broadband Gain and Return Loss

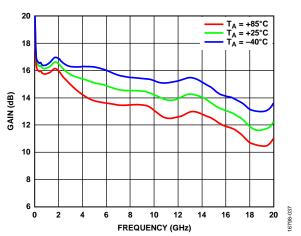


Figure 11. Gain vs. Temperature

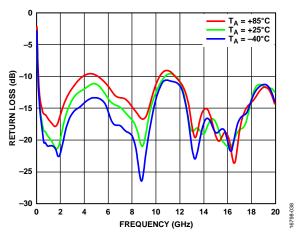


Figure 12. Input Return Loss vs. Temperature

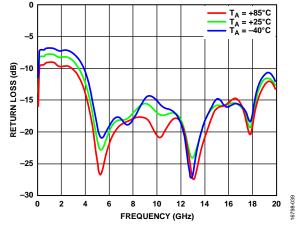


Figure 13. Output Return Loss vs. Temperature

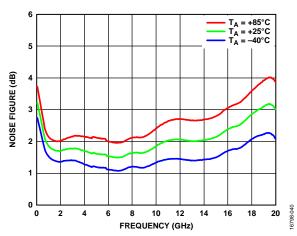


Figure 14. Noise Figure vs. Temperature

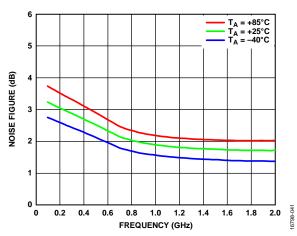


Figure 15. Noise Figure vs. Temperature, Low Frequency

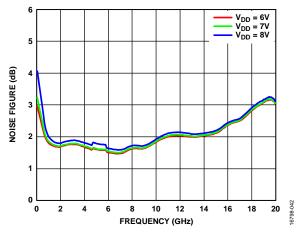


Figure 16. Noise Figure vs. V_{DD}

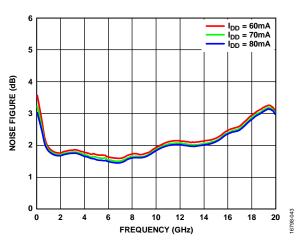


Figure 17. Noise Figure vs. IDD

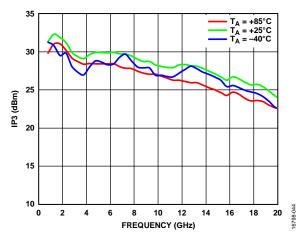


Figure 18. Output IP3 vs. Temperature

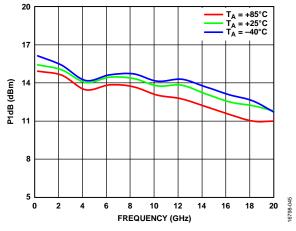


Figure 19. P1dB vs. Temperature

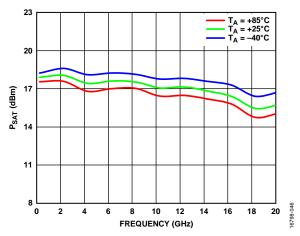


Figure 20. P_{SAT} vs. Temperature

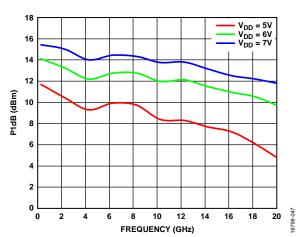


Figure 21. P1dB vs. V_{DD}

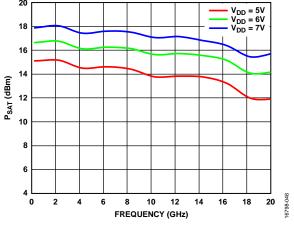


Figure 22. PSAT vs. VDD

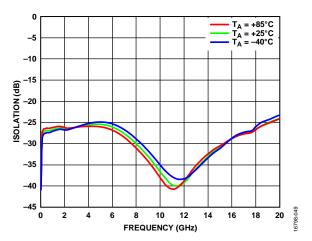


Figure 23. Reverse Isolation vs. Temperature

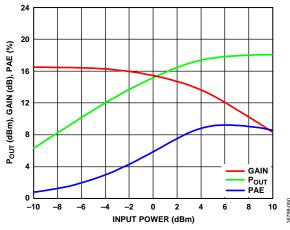


Figure 24. Power Compression at 2 GHz

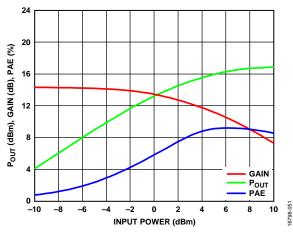


Figure 25. Power Compression at 10 GHz

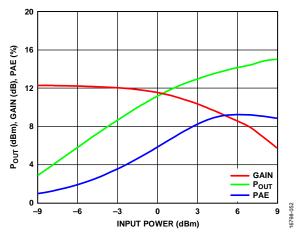


Figure 26. Power Compression at 18 GHz

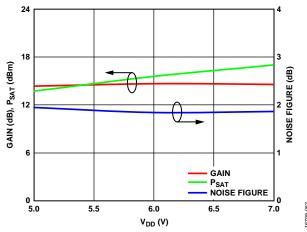


Figure 27. Gain, P_{SAT}, and Noise Figure vs. V_{DD} at 12 GHz

Figure 28. Gain, P_{SAT} , and Noise Figure vs. I_{DD} at 12 GHz

Data taken with $V_{\mbox{\scriptsize DD}}$ applied to the bias tee at Pin 21.

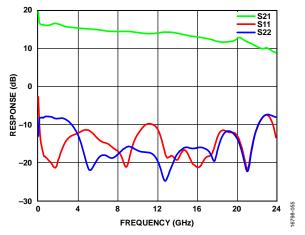


Figure 29. Broadband Gain and Return Loss, $V_{\rm DD} = 4 \, \text{V}$, Supply to Bias Tee

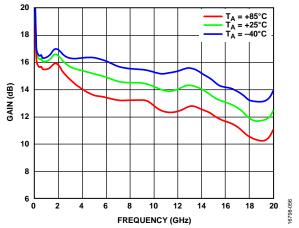


Figure 30. Gain vs. Temperature, $V_{DD} = 4 V$, Supply to Bias Tee

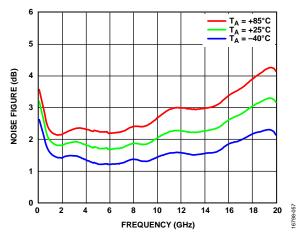


Figure 31. Noise Figure vs. Temperature, $V_{DD} = 4 V$, Supply to Bias Tee

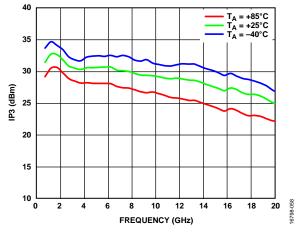


Figure 32. Output IP3 vs. Temperature, $V_{\text{DD}} = 4 \text{ V}$, Supply to Bias Tee

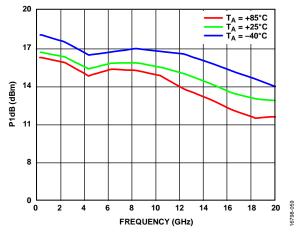


Figure 33. P1dB vs. Temperature, $V_{DD} = 4 V$, Supply to Bias Tee

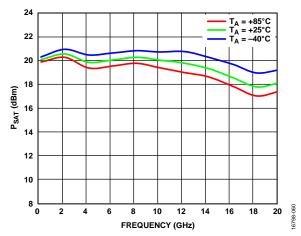


Figure 34. P_{SAT} vs. Temperature, $V_{DD} = 4 V$, Supply to Bias Tee

EVALUATION PRINTED CIRCUIT BOARD

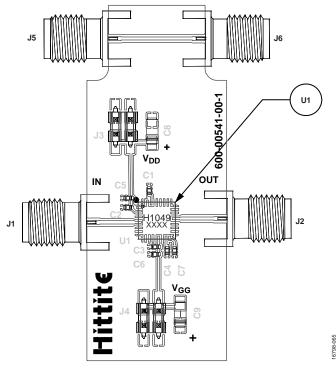


Figure 35. Evaluation Board Layout

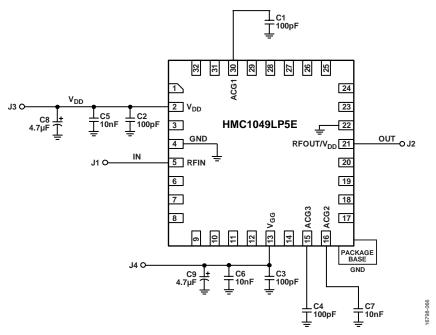


Figure 36. Evaluation Board Schematic

Table 5. List of Materials for Evaluation PCB

Item	Description
J1, J2, J5, J6	PCB mount SMA RF connector
J3, J4	DC pins
C1 to C4	100 pF capacitor, 0402 package
C5 to C7	10000 pF capacitor, 0402 package
C8, C9	4.7 μF capacitor, tantalum
U1	HMC1049LP5E
PCB ¹	600-00541-00-1 evaluation PCB

¹ Circuit board material: Rogers 4350 or Arlon 25FR.

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ω impedance; connect the package ground leads and exposed paddle directly to the ground plane. Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices, Inc., upon request.

PACKAGING AND ORDERING INFORMATION

OUTLINE DIMENSIONS

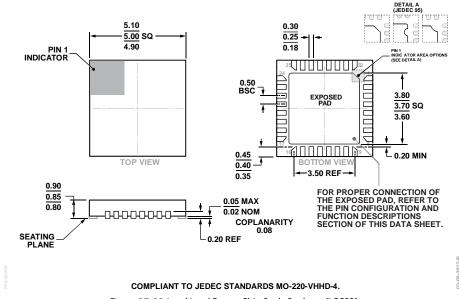


Figure 37. 32-Lead Lead Frame Chip Scale Package [LFCSP]
5 mm × 5 mm and 0.85 mm Package Height
(HCP-32-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Lead Finish	Moisture Sensitivity Level (MSL) Rating ²	Package Description	Ordering Quantity	Package Option
HMC1049LP5E	-40°C to +85°C	100% matte Sn	MSL1	32-Lead LFCSP		HCP-32-1
HMC1049LP5ETR	-40°C to +85°C	100% matte Sn	MSL1	32-Lead LFCSP, 7"Tape and Reel	500	HCP-32-1
EVAL01-HMC1049LP5				Evaluation Board		

¹ All models are RoHS Compliant Parts.

 $^{^2\,\}text{MSL1}$ rating indicates a maximum peak reflow temperature of 260°C.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 A81-2 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V A4011