Data Sheet

FEATURES

Nonreflective 50Ω design

Positive control: $0 \mathrm{~V} / 3.3 \mathrm{~V}$
Low insertion loss: 0.68 dB at 8.0 GHz
High isolation: $\mathbf{4 8} \mathbf{d B}$ at $8.0 \mathbf{~ G H z}$
High power handling
35 dBm through path
27 dBm terminated path
High linearity
1 dB compression (P1dB): 37 dBm typical
Input third-order intercept (IIP3): 62 dBm typical
ESD rating: $\mathbf{2} \mathrm{kV}$ human body model (HBM)
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 16-lead LFCSP package
No low frequency spurious
Settling time ($\mathbf{0 . 0 5 \mathrm { dB }}$ margin of final RFout): $\mathbf{7 . 5} \boldsymbol{\mu \mathrm { s }}$

APPLICATIONS

Test instrumentation

Microwave radios and very small aperture terminals (VSATs)
Military radios, radars, and electronic counter measures (ECMs)
Fiber optics and broadband telecommunications

GENERAL DESCRIPTION

The HMC1118 is a general-purpose, broadband, nonreflective single-pole, double-throw (SPDT) switch in a LFCSP surface mount package. Covering the 9 kHz to 13.0 GHz range, the switch offers high isolation and low insertion loss. The switch features $>48 \mathrm{~dB}$ isolation, 0.68 dB insertion loss up to 8.0 GHz , and a $7.5 \mu \mathrm{~s}$ settling time of 0.05 dB margin of final RFout. The switch operates using positive control voltage logic lines of +3.3 V

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
and 0 V and requires +3.3 V and -2.5 V supplies. The HMC 1118 can cover the same operating frequency range with a single positive supply voltage applied and the negative supply voltage ($\mathrm{V}_{\text {ss }}$) tied to ground and still maintaining good power handling performance. The HMC1118 is packaged in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, surface mount LFCSP package.

TABLE OF CONTENTS

Features 1
Applications.
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Electrical Specifications 3
Digital Control Voltages 4
Bias and Supply Current 4
Absolute Maximum Ratings 5
ESD Caution 5
REVISION HISTORY
10/2017—Rev. 0 to Rev. A
Change to Product Title. 1
Updated Outline Dimensions 11
Changes to Ordering Guide 11
Pin Configuration and Function Descriptions 6
Interface Schematics 6
Typical Performance Characteristics 7
Insertion Loss, Return Loss, and Isolation 7
Input Compression Point and Input Third-Order Intercept... 8
Theory of Operation 9
Applications Information 10
Evaluation PCB. 10
Outline Dimensions 11
Ordering Guide 11

10/2015-Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

$\mathrm{V}_{\mathrm{CTRL}}=0 \mathrm{~V} / 3.3 \mathrm{~V} \mathrm{dc}, \mathrm{V}_{\mathrm{DD}}=\mathrm{LS}=3.3 \mathrm{~V} \mathrm{dc}, \mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \mathrm{dc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega$ system, unless otherwise specified.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
INSERTION LOSS	9 kHz to 3.0 GHz 9 kHz to 8.0 GHz 9 kHz to 10.0 GHz 9 kHz to 13.0 GHz		$\begin{aligned} & 0.5 \\ & 0.68 \\ & 0.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.3 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
ISOLATION RFC TO RF1/RF2 (WORST CASE)	9 kHz to 3.0 GHz 9 kHz to 8.0 GHz 9 kHz to 10.0 GHz 9 kHz to 13.0 GHz	$\begin{aligned} & 40 \\ & 42 \\ & 28 \\ & 18 \end{aligned}$	$\begin{aligned} & 50 \\ & 48 \\ & 35 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
RETURN LOSS On State Off State	9 kHz to 3.0 GHz 9 kHz to 8.0 GHz 9 kHz to 13.0 GHz 9 kHz to 3.0 GHz 9 kHz to 8.0 GHz 9 kHz to 13.0 GHz		$\begin{aligned} & 26 \\ & 22 \\ & 9 \\ & 26 \\ & 14 \\ & 5 \end{aligned}$		
RADIO FREQUENCY (RF) SETTLING TIME	$50 \% \mathrm{~V}_{\text {CTRL }}$ to 0.05 dB margin of final RFout $50 \% \mathrm{~V}_{\text {CTRL }}$ to 0.1 dB margin of final RFout		$\begin{aligned} & 7.5 \\ & 6 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
SWITCHING SPEED $\mathrm{t}_{\text {RISE }} / \mathrm{t}_{\text {FALL }}$ ton/toff	10\%/90\% RF $50 \% \mathrm{~V}_{\text {CTRL }}$ to $10 \% / 90 \%$ RF		$\begin{aligned} & 0.85 \\ & 2.7 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
INPUT POWER 1 dB Compression (P1dB) 0.1 dB Compression (P0.1dB)	1 MHz to 13.0 GHz	35	$\begin{aligned} & 37 \\ & 35 \end{aligned}$		dBm dBm
INPUT THIRD-ORDER INTERCEPT (IIP3)	Two-tone input power $=14 \mathrm{dBm}$ at each tone, 1 MHz to 13.0 GHz		62		dBm
RECOMMENDED OPERATING CONDITIONS ${ }^{1}$ Positive Supply Voltage (VD) Negative Supply Voltage (Vss) Control Voltage (V CTrL) Range Logic Select (LS) Voltage Range RF Input Power Through Path Termination Path Hot Switch Power Level Case Temperature Range (TCASE)	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{CTRL}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text {, frequency }=2 \mathrm{GHz}$ $V_{D D}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text {, frequency }=2 \mathrm{GHz}$	$\begin{aligned} & 3.0 \\ & -2.75 \\ & 0 \\ & 0 \\ & \\ & \\ & -40 \end{aligned}$	$\begin{aligned} & 35 \\ & 27 \\ & 27 \end{aligned}$	3.6 -2.25 $V_{D D}$ $V_{D D}$ $+85$	V V V V dBm dBm dBm ${ }^{\circ} \mathrm{C}$

[^0]
DIGITAL CONTROL VOLTAGES

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\text {CASE }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.
Table 2.

Parameter	Symbol	Min	Typ	Max	Unit
INPUT CONTROL VOLTAGE					Test Condition/Comments
Low	V_{IL}	-0.3		+0.8	V
\quad High	V_{H}	2.0		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V

BIAS AND SUPPLY CURRENT

Table 3.

Parameter	Symbol	Min	Typ	Max
SUPPLY CURRENT				Unit
$V_{D D}=3.3 \mathrm{~V}$	I DD		20	
$\mathrm{~V}_{S S}=-2.5 \mathrm{~V}$	ISS	0.5	10	$\mu \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Positive Supply Voltage (VDD) Range	-0.3 V to +3.7 V dc
Negative Supply Voltage (Vss) Range	-2.8 V to +0.3 V
Control Voltage (V ctrl $^{\text {) }}$ Range	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Logic Select (LS) Voltage Range	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\begin{aligned} & \text { RF Input Power }{ }^{1}\left(\mathrm{~V}_{\mathrm{DD}} / V_{C T R L}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V}\right. \text {, } \\ & \left.\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text {, Frequency }=2 \mathrm{GHz}\right) \end{aligned}$	See Figure 2 to Figure 4
Through Path	37 dBm
Termination Path	28 dBm
Hot Switch Power Level ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$, Frequency $=2 \mathrm{GHz}$)	30 dBm
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Reflow Temperature (MSL3 Rating)	$260^{\circ} \mathrm{C}$
Channel Temperature	$135^{\circ} \mathrm{C}$
Thermal Resistance (Channel to Package Bottom)	
Through Path	$116^{\circ} \mathrm{C} / \mathrm{W}$
Terminated Path	$100^{\circ} \mathrm{C} / \mathrm{W}$
ESD Sensitivity (HBM), Class 2	2 kV

${ }^{1}$ For recommended operating conditions, see Table 1.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Figure 2. Power Derating Through Path

Figure 3. Power Derating Through Path (Low Frequency Detail)

Figure 4. Power Derating for Hot Switching Power

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. THE EXPOSED PAD MUST BE CONNECTED TO THE RF/DC GROUND OF THE PRINTED CIRCUIT BOARD (PCB).

Figure 5. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 2, 4 to 6, 8, 13, 15, 16	GND	Ground. The package bottom has an exposed metal pad that must connect to the printed circuit board (PCB) RF/dc ground. See Figure 6 for the GND interface schematic.
3	RFC	RF Common Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc.
7	RF2	RF2 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc.
14	RF1	RF1 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc .
9	$\mathrm{V}_{\text {ss }}$	Negative Supply Voltage Pin.
10	VCTRL	Control Input Pin. See Table 1, Table 2, and Table 6.
11	LS	Logic Select Input Pin. See Table 1, Table 2, and Table 6.
12	VDD	Positive Supply Voltage Pin.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF/dc ground of the printed circuit board (PCB).

Table 6. Truth Table

Control Input		Signal Path State	
LS	VctRL	RFC to RF1	RFC to RF2
High	Low	On	Off
High	High	Off	On
Low	Low	Off	On
Low	High	On	Off

INTERFACE SCHEMATICS

Figure 6. GND Interface Schematic

Figure 7. V CTRL Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

Figure 9. Insertion Loss vs. Frequency

Figure 10. Return Loss vs. Frequency

Figure 11. Isolation Between RFC and the RF1 and RF2 Ports vs. Frequency

Figure 12. Isolation Between RF1 and RF2 Ports vs. Frequency

INPUT COMPRESSION POINT AND INPUT THIRD-ORDER INTERCEPT

Figure 13. 0.1 dB and 1 dB Compression Point vs. Frequency

Figure 14. 1 dB Input Compression Point vs. Frequency over Temperature

Figure 15. Input Third-Order Intercept (IIP3) Point vs. Frequency over Temperature

Figure 16.0.1 dB and 1 dB Input Compression Point vs. Frequency (Low Frequency Detail)

Figure 17. 1 dB Input Compression Point vs. Frequency over Temperature (Low Frequency Detail)

Figure 18. Input Third-Order Intercept (IIP3) Point vs. Frequency over Temperature (Low Frequency Detail)

THEORY OF OPERATION

The HMC1118 requires a positive supply voltage applied to the $V_{\text {DD }}$ pin and a negative supply voltage applied to the $V_{\text {ss }}$ pin. Bypassing capacitors are recommended on the supply lines to minimize RF coupling. The HMC1118 can operate with a single positive supply voltage applied to the V_{DD} pin and the negative voltage input pin ($\mathrm{V}_{\text {ss }}$) connected to ground; however, some performance degradations in the input power compression and third-order intercept can occur.
The HMC1118 is controlled via two digital control voltages applied to the $V_{\text {CTRL }}$ pin and the LS pin. A small value bypassing capacitor is recommended on these digital signal lines to improve the RF signal isolation.
The HMC1118 is internally matched to 50Ω at the RF input port (RFC) and the RF output ports (RF1 and RF2); therefore, no external matching components are required. The RF1 and RF2 pins are dc-coupled, and dc blocking capacitors are required on the RF paths if the RF potential is not equal to a commonmode voltage of 0 V . The design is bidirectional; the input and outputs are interchangeable.

The ideal power-up sequence is as follows:

1. Power up GND.
2. Power up $V_{D D}$ and $V_{\text {ss }}$. The relative order is not important.
3. Power up the digital control inputs. The relative order of the logic control inputs is not important. Powering the digital control inputs before the $V_{D D}$ supply can inadvertently forward bias and damage the internal ESD protection structures.
4. Power up the RF input.

The logic select (LS) allows the user to define the control input logic sequence for the RF path selections. With the LS pin set to logic high, the RFC to RF1 path turns on when $\mathrm{V}_{\text {CTRL }}$ is logic low, and the RFC to RF2 path turns on when $V_{\text {CtrL }}$ is logic high. With LS set to logic low, the RFC to RF1 path turns on when $V_{\text {CTRL }}$ is logic high, and the RFC to RF2 path turns on when $V_{\text {Ctre }}$ is logic low.
Depending on the logic level applied to the LS and $V_{\text {Ctrl }}$ pins, one RF output port (for example, RF1) is set to on mode, by which an insertion loss path provides the input to the output. The other RF output port (for example, RF2) is then set to off mode, by which the output is isolated from the input. When the RF output port (RF1 or RF2) is in isolation mode, internally terminate it to 50Ω, and the port absorbs the applied RF signal (see Table 7).

Table 7. Switch Mode Operation

Digital Control Inputs		Signal Mode	
LS	V cTRL	RFC to RF1	RFC to RF2
High	Low	On mode. A low insertion loss path from the RFC port to the RF1 port.	Off mode. The RF2 port is isolation from the RFC port and internally terminated to a 50Ω load to absorb the applied RF signals.
High	High	Off mode. The RF1 port is isolation from the RFC port and internally terminated to a 50Ω load to absorb the applied RF signals.	On mode. A low insertion loss path from the RFC port to the RF2 port.
Low	Low	Off mode. The RF1 port is isolation from the RFC port and internally terminated to a 50Ω load to absorb the applied RF signals.	On mode. A low insertion loss path from the RFC port to the RF2 port.
Low	High	On mode. A low insertion loss path from the RFC port to the RF1 port.	Off mode. The RF2 port is isolation from the RFC port and internally terminated to a 50Ω load to absorb the applied RF signals.

APPLICATIONS INFORMATION
 EVALUATION PCB

Generate the evaluation PCB used in this application with proper RF circuit design techniques. Signal lines at the RF port must have 50Ω impedance, and the package ground leads and backside ground slug must be connected directly to the ground plane similarly to what is shown in Figure 19. The evaluation board shown in Figure 19 is available from Analog Devices, Inc. upon request.

Table 8. Bill of Materials for the EV1HMC1118LP3D Evaluation Board ${ }^{1}$

Item	Description	Manufacturer 2
J1 to J3	PC mount SMA RF connectors	
TP1 to TP5	Through-hole hold mount test points	
C1, C5	100 pF capacitors, 0402 package	
U1	HMC1118 SPDT switch	Analog Devices, Inc.
PCB	$600-01012-00-1$ evaluation PCB, Rogers 4350 circuit board material	EV1HMC1118LP3D, Analog Devices, Inc. ${ }^{1}$

[^1]
OUTLINE DIMENSIONS

*COMPLIANT WITH JEDEC STANDARDS MO-220-VEED-4
WITH THE EXCEPTION OF PACKAGE EDGE TO LEAD EDGE.
Figure 20. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.85 mm Package Height
(CP-16-38)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	MSL Rating ${ }^{2}$	Package Description	Package Option
HMC1118LP3DE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSL3	16 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-38
HMC1118LP3DETR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSL3	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-38
EV1HMC1118LP3D			Evaluation Board	

${ }^{1}$ HMC1118LP3DE and HMC1118LP3DETR are RoHS-Compliant Parts.
${ }^{2}$ See the Absolute Maximum Ratings section.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: ${ }^{1}$ These are the recommended values for these parameters.

[^1]: ${ }^{1}$ Reference this number to order the full evaluation PCB.
 ${ }^{2}$ The blank cells in the manufacturer column are left blank intentionally for they are user-selectable.

