12.92 GHz to 14.07 GHz MMIC VCO with Half Frequency Output

FEATURES

Dual output frequency range

fout $=12.92 \mathrm{GHz}$ to 14.07 GHz

Output power (Pout): $\mathbf{1 1 . 5 ~ d B m}$
SSB phase noise: - $\mathbf{1 1 3} \mathbf{~ d B c / H z}$ at 100 kHz
No external resonator needed
RoHS compliant, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 32-lead LFCSP: $\mathbf{2 5} \mathrm{mm}^{2}$

APPLICATIONS

Point to point and multipoint radios
Test equipment and industrial controls
Very small aperture terminals (VSATs)

GENERAL DESCRIPTION

The HMC1169 is a monolithic microwave integrated circuit (MMIC), voltage controlled oscillator (VCO) that integrates a resonator, a negative resistance device, and a varactor diode, and features a half frequency output.

FUNCTIONAL BLOCK DIAGRAM

Because of the monolithic construction of the oscillator, the output power and phase noise performance are excellent over temperature.

The output power is 11.5 dBm typical from a 5 V supply voltage. The VCO is housed in a RoHS compliant LFCSP and requires no external matching components.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Interface Schematics. 6
REVISION HISTORY
2/2018-Rev. 0 to Rev. A
Changes to Figure 15 8
Updated Outline Dimensions 12
Changes to Ordering Guide 12
Typical Performance Characteristics 7
Theory of Operation 9
Applications Information 10
Evaluation Printed Circuit Board (PCB) 11
Bill of Materials. 11
Packaging and Ordering Information 12
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
FREQUENCY Range Output Frequency (fout) Half Output Frequency (fout/2) Drift Rate Pulling Pushing	$\begin{aligned} & 12.92 \\ & 6.46 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 14.07 \\ & 7.035 \end{aligned}$	GHz GHz $\mathrm{MHz} /{ }^{\circ} \mathrm{C}$ MHz p-p MHz/V	Pulling into a $2.0: 1$ voltage standing wave ratio (VSWR) At VTUNE $=5 \mathrm{~V}$
OUTPUT POWER (Pout) RFOUT RFOUT/2 Supply Current (Icc)	$\begin{aligned} & 7 \\ & -1 \end{aligned}$	$\begin{aligned} & 11.5 \\ & +3 \\ & 200 \\ & 220 \\ & 240 \end{aligned}$	$\begin{aligned} & 15 \\ & +7 \\ & 260 \end{aligned}$	dBm dBm mA mA mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.00 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V} \end{aligned}$
HARMONICS, SUBHARMONICS $1 / 2$ 3/2 Second Third		$\begin{aligned} & 39 \\ & 39 \\ & 22 \\ & 27 \end{aligned}$		dBc dBc dBc dBc	
TUNING Voltage (V $\mathrm{V}_{\text {tune }}$) Sensitivity Tune Port Leakage Current	2 75		$\begin{aligned} & 13 \\ & 350 \\ & 10 \end{aligned}$		$V_{\text {tune }}=13 \mathrm{~V}$
OUTPUT RETURN LOSS		5		dB	
SINGLE-SIDEBAND (SSB) PHASE NOISE 10 kHz Offset 100 kHz Offset		$\begin{aligned} & -86 \\ & -113 \end{aligned}$	$\begin{aligned} & -82 \\ & -110 \end{aligned}$	$\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$	

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Vcc	5.5 V dc
VTUNE	0 V to 15 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Nominal Junction Temperature (to	$135^{\circ} \mathrm{C}$
\quad Maintain 1 Million Hours Mean Time to	
\quad Failure (MTTF))	
Nominal Junction Temperature ($\left.\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$	$119^{\circ} \mathrm{C}$
Maximum Reflow Temperature (MSL3	$260^{\circ} \mathrm{C}$
\quad Rating)	
Thermal Resistance (Junction to Ground	$29^{\circ} \mathrm{C} / \mathrm{W}$
\quad Paddle)	
ESD Sensitivity	
\quad Human Body Model (HBM)	300 V (Class 1A)
Field Induced Charged Device Model	300 V (Class II)
\quad (FICDM)	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1 to 4,6 to 10, 13 to 18, 20, 22 to 28,	NC	No Connect. However, these pins can be connected to RF/dc ground without affecting the performance of the device.
30 to 32	GND	Ground. These pins must be connected to RF/dc ground.
5,11	RFOUT/2	Half Radio Frequency Output. This pin is ac-coupled. 12
19	RFOUT	Vadio Frequency Output. This pin is ac-coupled.
21	VTUNE	Supply Voltage (5 V). Control Voltage and Modulation Input. The modulation bandwidth is dependent on the drive source impedance.
29	EP	Exposed Pad. The package bottom has an exposed metal pad that must be connected to RF/dc ground.

INTERFACE SCHEMATICS

Figure 3. RFOUT Interface
-HO RFOUT/2 商
Figure 4. RFOUT/2 Interface

Figure 5. Vcc Interface

Figure 7. GND Interface

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. Output Frequency vs. Tuning Voltage (VTUNE $)$

Figure 9. Output Power vs. Tuning Voltage (VTUNE)

Figure 10. Sensitivity vs. Tuning Voltage ($V_{\text {TUNE }}$)

Figure 11. Supply Current (Icc) vs. Tuning Voltage (VTUNE)

Figure 12. RFOUT/2 Output Frequency vs. Tuning Voltage (VTUNE)

Figure 13. RFOUT/2 Output Power vs. Tuning Voltage (VTUNE)

Figure 14. SSB Phase Noise vs. Tuning Voltage (VTUNE)

Figure 15. SSB Phase Noise vs. Offset Frequency at Tuning Voltage $\left(V_{\text {TUNE }}\right)=5 \mathrm{~V}$

THEORY OF OPERATION

The HMC1169 voltage controlled oscillator is a free running voltage controlled frequency source. The output frequency is controlled by applying a variable tune voltage to the VTUNE port. Because VTUNE is varied from the lowest to the highest allowed voltage, the VCO output frequency increases from the lowest to the highest operating frequency. This VCO output frequency change with the applied VTUNE input results in the VCO frequency sensitivity characteristic ($\mathrm{MHz} / \mathrm{V}$). The VCO frequency sensitivity is not constant and varies across the tunable range.
The HMC1169 VCO is specified to cover the minimum to maximum frequencies specified in this data sheet over the entire specified temperature range, including the VCO frequency drift $\left(\mathrm{MHz} /{ }^{\circ} \mathrm{C}\right)$. In addition, for low phase noise operation, drive the VTUNE port from a low noise voltage source. Excessive noise on the VTUNE port results in poor phase noise performance. The tune port modulation bandwidth is typically greater than 10 MHz .

To achieve optimum VCO phase noise performance when using the HMC1169, it is important to use a low noise power supply for V_{CC} biasing. Because the VCO output frequency changes with small changes in the V_{CC} bias voltage (pushing), noise on the V_{CC} bias pin results in increased phase noise. Take care to use low noise regulators, otherwise, bias line noise may corrupt the low phase noise output of the HMC1169.
Internally, the radio frequency (RF) output frequency is generated from a doubler circuit. This generation results in an unwanted low level output signal present at half the RFOUT frequency (RFOUT/2). If necessary, this undesired spurious signal can be further filtered on the customer application board using a filter. The RFOUT/2 output signal is available directly at the RFOUT/2 port. The RFOUT/2 port commonly drives a phase-locked loop (PLL) synthesizer for phase locking the HMC1169 output if needed.
Lastly, the HMC1169 RFOUT port incorporates an internal buffer amplifier to provide good output matching. The internal buffer amplifier also isolates the VCO core from the output load and minimizes the VCO frequency change with the changes to the output load impedance (pulling).

APPLICATIONS INFORMATION

The HMC1169 serves as the local oscillator (LO) in microwave synthesizer applications. The primary applications are point to point microwave radios, military, radars, test and measurement, as well as industrial and medical equipment. The low phase noise allows higher orders of modulation and offers improved bit error rates in communication systems, whereas the linear,
monotonic tuning sensitivity allows a stable loop filter design. The higher output power minimizes the gain required to drive subsequent stages. The half frequency output reduces the input frequency to the prescaler without the addition of residual phase noise to the input of the phase-locked loop synthesizer.

Figure 16. Typical Application Diagram

EVALUATION PRINTED CIRCUIT BOARD (PCB)

Figure 17. Evaluation $P C B$

The circuit board used in an application uses RF circuit design techniques. Ensure that the signal lines have 50Ω impedance and that the package ground leads and backside ground paddle are connected directly to the ground plane.
Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown in Figure 17 is available from Analog Devices, Inc., upon request.

BILL OF MATERIALS

Table 4. Bill of Materials for the EVAL-HMC1169

Item	Description
J1 to J4	PCB mount SMA RF connectors
J5, J6	2 mm dc headers
C1 to C3	100 pF capacitors, 0402 package
C4	1000 pF capacitor, 0402 package
C5 to C7	$2.2 \mu \mathrm{~F}$ tantalum capacitors
C8	$0.01 \mu \mathrm{~F}$ capacitor, 0603 package
U1	HMC1169 VCO
PCB 1	110225 evaluation board ${ }^{2}$

${ }^{1}$ Circuit board material is Rogers ${ }^{\star} 4350$.
${ }^{2}$ Reference this number when ordering the complete evaluation PCB.

PACKAGING AND ORDERING INFORMATION

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-4.
Figure 18. 32-Lead Lead Frame Chip Scale Package [LFCSP]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body and 0.85 mm Package Height (HCP-32-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	MSL Rating ${ }^{\text {2 }}$	Package Description	Package Option	Qty.
HMC1169LP5E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSL3	32-Lead Lead Frame Chip Scale Package [LFCSP]	HCP-32-1	
HMC1169LP5ETR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSL3	32-Lead Lead Frame Chip Scale Package [LFCSP], 7"Tape and Reel	HCP-32-1	500
EV1HMC1169LP5			Evaluation Board		

${ }^{1}$ The HMC1169LP5E and HMC1169LP5ETR are RoHS Compliant Parts.
${ }^{2}$ See the Absolute Maximum Ratings section, Table 2.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for VCO Oscillators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAOC-009260-SMB003 MAOC-009261-PKG003 MAOC-009872-000000 MAOC-009264-PKG003 HMC384LP4ETR CVCO33CL-01100150 CVCO33CL-0415-0435 CVCO33CL-0750-0770 HMC1166LP5ETR HMC391LP4TR HMC1168LP5ETR MAOC-009260-PKG003 MAOC-009266-PKG003 HMC511LP5ETR HMC534LP5ETR HMC431LP4ETR HMC3587LP3BETR CVC055CC-1680-1680 CVCO33CL-0125-0200 CVCO45CL-0100-0140 CVCO45CL-0421-0441 CRBV55BE-1930-1990 MAX2609EUT+T HMC1160LP5E HMC1164LP5E HMC1166LP5E HMC1167LP5E HMC1168LP5E HMC587LC4BTR HMC732LC4B HMC358MS8GE HMC384LP4E HMC385LP4E HMC388LP4E HMC390LP4E HMC391LP4 HMC391LP4E HMC398QS16GE HMC401QS16GE HMC416LP4E HMC429LP4E HMC430LP4E HMC466LP4E HMC506LP4 HMC507LP5E HMC508LP5E HMC509LP5 HMC510LP5E HMC511LP5E HMC512LP5E

