
GaAs MMIC PASSIVE FREQUENCY DOUBLER, 4 - 8 GHz INPUT

Typical Applications

The HMC204 is suitable for:

- Wireless Local Loop
- . LMDS, VSAT, and Point-to-Point Radios
- Test Equipment

Functional Diagram

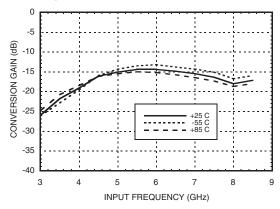
Features

Conversion Loss: 17 dB Fo, 3Fo, 4Fo Isolation: 38 dB

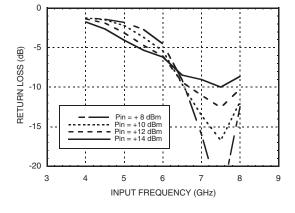
Passive: No Bias Required

General Description

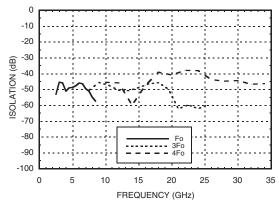
The HMC204 is a passive miniature frequency doubler in a MMIC die. Suppression of undesired fundamental and higher order harmonics is 38 dB typical with respect to input signal level. The doubler utilizes the same GaAs Schottky diode/balun technology found in Hittite MMIC mixers. It features small size, no DC bias, and no measurable additive phase noise onto the multiplied signal.


Electrical Specifications, $T_A = +25^{\circ}$ C, As a Function of Drive Level

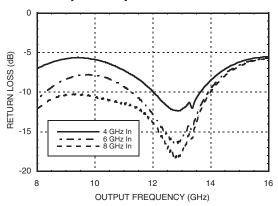
	Input = +10 dBm			Input = +12 dBm			Input = +15 dBm			
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, Input	5.5 - 7.5			5.0 - 8.0		4.0 - 8.0			GHz	
Frequency Range, Output	11.0 - 15.0		10.0 - 16.0		8.0 - 16.0			GHz		
Conversion Loss		17	20		17	20		18	21	dB
FO Isolation (with respect to input level)				41	45					dB
3FO Isolation (with respect to input level)				42	46					dB
4FO Isolation (with respect to input level)				35	38					dB



GaAs MMIC PASSIVE FREQUENCY DOUBLER, 4 - 8 GHz INPUT

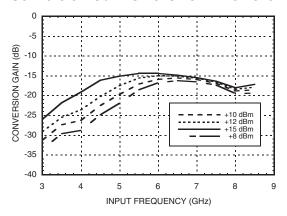

Conversion Gain vs Temperature @ +15 dBm Drive Level

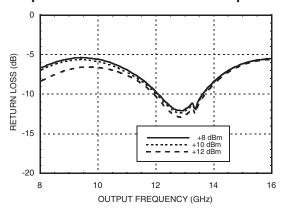
Input Return Loss vs. Drive Level



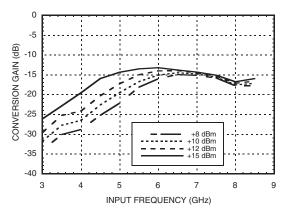
Isolation @ +15 dBm Drive Level*

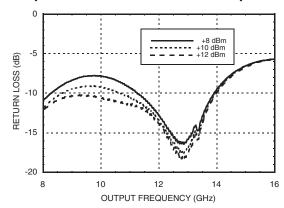
*With respect to input level

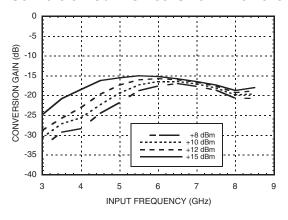

Output Return Loss for Several Input Frequencies

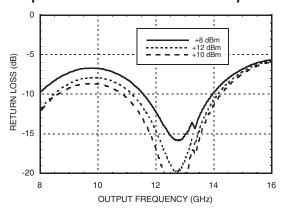


GaAs MMIC PASSIVE FREQUENCY DOUBLER, 4 - 8 GHz INPUT


Conversion Gain @ 25°C vs. Drive Level


Output Return Loss with 4 GHz Input

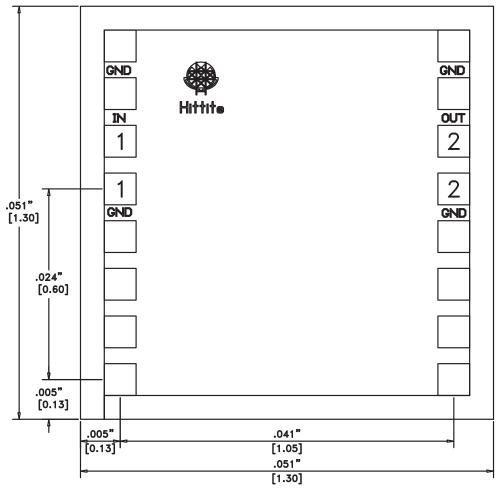

Conversion Gain @ -55°C vs. Drive Level


Output Return Loss with 6 GHz Input

Conversion Gain @ +85°C vs. Drive Level

Output Return Loss with 8 GHz Input

GaAs MMIC PASSIVE FREQUENCY DOUBLER, 4 - 8 GHz INPUT


Absolute Maximum Ratings

Input Drive	+27 dBm	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-55 to +85 °C	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Die Packaging Information [1]

Standard	Alternate	
WP-2 (Waffle Pack)	[2]	

[1] Refer to the "Packaging Information" section for die packaging dimensions.

[2] For alternate packaging information contact Hittite Microwave Corporation.

NOTES

- 1. DIE THICKNESS IS 0.100 [0.004], BACKSIDE IS GROUND
- 2. BOND PADS ARE 0.100 [0.004] SQUARE
- 3. BOND PAD SPACING, CTR-CTR: 0.150 [0.006]
- 4. ALL DIMENSION IN INCHES [MILLIMETERS]
- 5. ALL TOLERANCES ARE ± 0.025 [± 0.001]
- 6. BOND PAD METALLIZATION: GOLD 7. BACKSIDE METALLIZATION: GOLD

GaAs MMIC PASSIVE FREQUENCY **DOUBLER, 4 - 8 GHz INPUT**

Pad Description

Pad Number	Function	Description	Interface Schematic		
1	RFIN	Pad is DC coupled and matched to 50 Ohms.	RFIN O		
2	RFOUT	Pad is AC coupled and matched to 50 Ohms.	RFOUT ○────────────────────────────────────		
Die Bottom	GND	Die bottom must be connected to RF/DC ground.	GND		

GaAs MMIC PASSIVE FREQUENCY DOUBLER, 4 - 8 GHz INPUT

Handling Precautions

Follow these precautions to avoid permanent damage.

Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against ESD strikes.

Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.

Epoxy Die Attach:

Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position.

Cure epoxy per the manufacturer's schedule.

Wire Bonding

Ball or wedge bond with 1.0 diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package. RF bonds should be as short as possible.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Signal Conditioning category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50-T3 B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 FM-104-PIN CER0813B MAPDCC0005 3A325 40287 41180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C PD0922J5050D2HF 1E1305-3 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 TP-103-PIN BD1222J50200AHF BD1722J50100AHF