FEATURES

Broadband frequency range: $\mathbf{1 0 0} \mathbf{~ M H z}$ to $\mathbf{4 ~ G H z}$
Nonreflective 50Ω design
Low insertion loss: 0.7 dB at $\mathbf{2 ~ G H z}$
High isolation: 43 dB at $2 \mathbf{~ G H z}$
High input linearity at 250 MHz to $\mathbf{4} \mathbf{~ G H z}$
1 dB compression (P1dB): 29 dBm typical
Third order intercept (IP3): $\mathbf{4 7} \mathbf{d B m}$ typical
High power handling
28.5 dBm through path

25 dBm terminated path
Single positive supply: 3 V to 5 V
Integrated 2 to 4 line decoder
16-lead, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP package
ESD rating: 250 V (Class 1 A)

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Controlled manufacturing baseline
One assembly/test site
Product change notification
Qualification data available on request

APPLICATIONS

Cellular/4 G infrastructure

Wireless infrastructure

Automotive telematics
Mobile radios
Test equipment

GENERAL DESCRIPTION

The HMC241ATCPZ-EP is a general-purpose, nonreflective, 100 MHz to 4 GHz single-pole, four-throw (SP4T) switch manufactured using a gallium arsenide (GaAs) process. This switch offers high isolation of 43 dB typical at 2 GHz , low insertion loss of 0.7 dB at 2 GHz , and on-chip termination of the isolated ports.
The on-chip circuitry allows the HMC241ATCPZ-EP to operate at a single, positive supply voltage range of 3 V to 5 V . This switch

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
requires two positive logic control voltages. The HMC241ATCPZEP includes an on-chip, binary two to four line decoder that provides logic control from two logic input lines to select one of the four radio frequency (RF) lines.

The HMC241ATCPZ-EP is available in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}, 16$ lead LFCSP package. Additional application and technical information can be found in the HMC241ALP3E data sheet.

[^0]
TABLE OF CONTENTS

Features .. 1
Enhanced Product Features ... 1
Applications.. 1
Functional Block Diagram ... 1
General Description.. 1
Revision History ... 2
Specifications... 3
Absolute Maximum Ratings... 4

REVISION HISTORY

3/2018-Revision 0: Initial Version

ESD Caution.. 4
Pin Configuration and Function Descriptions............................ 5
Interface Schematics ... 6
Typical Performance Charcteristics ... 7
Outline Dimensions .. 8
Ordering Guide .. 8

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}, 50 \Omega$ system, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		0.1		4	GHz
INSERTION LOSS Between RFC and RF1 to RF4 (On)		100 MHz to 1 GHz 1 GHz to 2 GHz 2 GHz to 2.5 GHz 2.5 GHz to 4 GHz		$\begin{aligned} & 0.6 \\ & 0.7 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.0 \\ & 1.2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
ISOLATION Between RFC and RF1 to RF4 (Off)		100 MHz to 1 GHz 1 GHz to 2 GHz 2 GHz to 2.5 GHz 2.5 GHz to 4 GHz	$\begin{aligned} & 40 \\ & 38 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 43 \\ & 41 \\ & 32 \end{aligned}$		dB dB dB dB
RETURN LOSS RFC and RF1 to RF4 (On) RF1 to RF4 (Off)		100 MHz to 2.5 GHz 2.5 GHz to 4 GHz 100 MHz to 4 GHz		$\begin{aligned} & 18 \\ & 12 \\ & 12 \end{aligned}$		dB dB dB
SWITCHING Rise and Fall Time On and Off Time	$\mathrm{t}_{\text {RISE, }} \mathrm{t}_{\text {fall }}$ ton, toff	250 MHz to 4 GHz 10% to 90% of RF output 50 \% V ctı to 90 \% of RF output		$\begin{aligned} & 30 \\ & 100 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
INPUT LINEARITY ${ }^{1}$ 1 dB Power Compression Third-Order Intercept	P1dB IP3	$\begin{aligned} & 250 \mathrm{MHz} \text { to } 4 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$ 10 dBm per tone, 1 MHz spacing $\begin{aligned} & V_{D D}=3 V \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$	23	$\begin{aligned} & 24 \\ & 29 \\ & 50 \\ & 47 \end{aligned}$		dBm dBm dBm dBm
SUPPLY Voltage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \end{aligned}$	$V_{\text {DD }}$ pin	3		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$
DIGITAL CONTROL INPUTS Voltage Low High Current Low High	$V_{\text {cti }}$ VinL $\mathrm{V}_{\text {INH }}$ linL linh	CTRLA and CTRLB pins $\begin{aligned} & V_{D D}=3 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 40 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
OPERATING TEMPERATURE			-55		+125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Input linearity performance degrades at frequencies less than 250 MHz .

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1.
Table 2.

Parameter	Rating
Positive Supply Voltage (VDD)	7 V
Digital Control Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+1 \mathrm{~V}$
RF Input Power (See Figure 2)$\left(\mathrm{f}=100 \mathrm{MHz} \text { to } 4 \mathrm{GHz}, \mathrm{~T}_{\text {CASE }}=85^{\circ} \mathrm{C}\right. \text {) }$	
$V_{D D}=3 \mathrm{~V}$	
Through Path	23.5 dBm
Terminated Path	20 dBm
Hot Switching	17.5 dBm
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	
Through Path	28.5 dBm
Terminated Path	23.5 dBm
Hot Switching	22.5 dBm
Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow Temperature (MSL3 Rating) ${ }^{1}$	$260^{\circ} \mathrm{C}$
Junction to Case Thermal Resistance, $\theta_{\text {Jc }}$	
Through Path	$144^{\circ} \mathrm{C} / \mathrm{W}$
Terminated Path	$300^{\circ} \mathrm{C} / \mathrm{W}$
Electrostatic Discharge (ESD) Sensitivity Human Body Model (HBM)	250 V (Class 1A)

[^1]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Figure 2. Maximum Input Power vs. Case Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RF4	RF Port 4. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required on this pin.
$\begin{aligned} & 2,3,10,11, \\ & 13 \end{aligned}$	NIC	Not Internally Connected. These pins must be connected to the printed circuit board (PCB) RF ground to maximize isolation.
4	RF3	RF Port 3. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required on this pin.
5, 14, 16	GND	Ground. The package bottom has an exposed metal pad that must connect to the PCB RF/dc ground.
6	$V_{D D}$	Supply Voltage.
7	B	Logic Control Input B. See Figure 5 for the control input interface schematic. See the recommended input control voltages range in Table 1 and the control voltage truth table (Table 4).
8	A	Logic Control Input A. See Figure 5 for the control input interface schematic. See the recommended input control voltages range in Table 1 and the control voltage truth table (Table 4).
9	RF2	RF Port 2. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required on this pin.
12	RF1	RF Port 1. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required on this pin.
15	$\begin{aligned} & \text { RFC } \\ & \text { EPAD } \end{aligned}$	RF Common Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required on this pin. Exposed Pad. The exposed pad must be connected to RF/dc ground.

Table 4. Control Voltage Truth Table

Digital Control Input					
RF Paths					
CTRLA	CTRLB	RFC to RF1	RFC to RF2	RFC to RF3	RFC to RF4
Low	Low	Insertion loss (on)	Isolation (off)	Isolation (off)	Isolation (off)
High	Low	Isolation (off)	Insertion loss (on)	Isolation (off)	Isolation (off)
Low	High	Isolation (off)	Isolation (off)	Insertion loss (on)	Isolation (off)
High	High	Isolation (off)	Isolation (off)	Isolation (off)	Insertion loss (on)

INTERFACE SCHEMATICS

Figure 4. RFC to RF4 Interface Schematic

Figure 5. CTRLA and CTRLB Interface Schematic

Enhanced Product

TYPICAL PERFORMANCE CHARCTERISTICS

Figure 7. Insertion Loss Between RFC and RF1 vs. Frequency at Various Temperatures

OUTLINE DIMENSIONS

Figure 8. 16-Terminal Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.85 mm Package Height (CP-16-51)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	MSL Rating 2	Package Description $^{\text {P }}$ Package Option	
HMC241ATCPZ-EP-PT	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MSL3	16-Terminal Lead Frame Chip Scale Package [LFCSP]	CP-16-51
HMC241ATCPZ-EP-R7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MSL3	16-Terminal Lead Frame Chip Scale Package [LFCSP]	CP-16-51

${ }^{1}$ All models are RoHS compliant.
${ }^{2}$ See the Absolute Maximum Ratings section.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Technical Support

[^1]: ${ }^{1}$ See the Ordering Guide section.

