
GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz

Typical Applications

The HMC260LC3B is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- Military End-Use

Functional Diagram

Features

Passive: No DC Bias Required

Input IP3: +20 dBm LO/RF Isolation: 40 dB

Wide IF Bandwidth: DC - 8 GHz

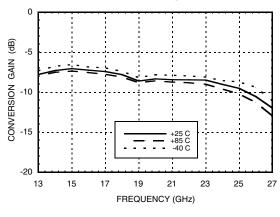
12 Lead Ceramic 3x3 mm SMT Package: 9mm²

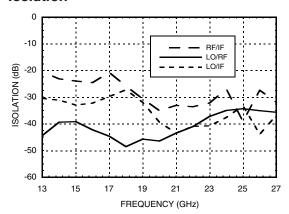
General Description

The HMC260LC3B is a general purpose double balanced mixer in a leadless RoHS compliant SMT package that can be used as an upconverter or downconverter between 14 and 26 GHz. This mixer requires no external components or matching circuitry. The HMC260LC3B provides excellent LO to RF and LO to IF suppression due to optimized balun structures. The mixer operates with LO drive levels above +9 dBm. The HMC260LC3B eliminates the need for wire bonding, allowing use of surface mount manufacturing techniques.

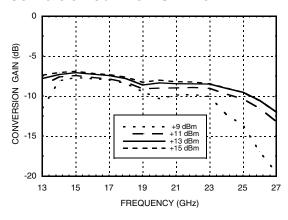
Electrical Specifications, $T_A = +25^{\circ}$ C, IF= 1 GHz, LO= +13 dBm*

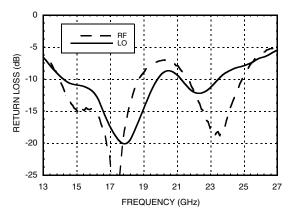
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF & LO		14 - 18	14 - 18 18 - 26		GHz		
Frequency Range, IF		DC - 8 DC -		DC - 8		GHz	
Conversion Loss		7.5	10.5		9	12	dB
Noise Figure (SSB)		7.5	10.5		9	12	dB
LO to RF Isolation	34	40		30	35		dB
LO to IF Isolation	24	30		24	35		dB
RF to IF Isolation	15	25		25	30		dB
IP3 (Input)		18			20		dBm
IP2 (Input)		50			50		dBm
1 dB Gain Compression (Input)		12			14		dBm

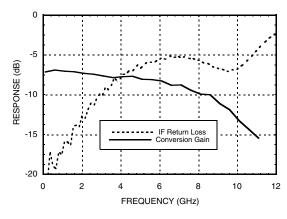

 $^{^*}$ Unless otherwise noted, all measurements performed as downconverter, IF= 1 GHz.

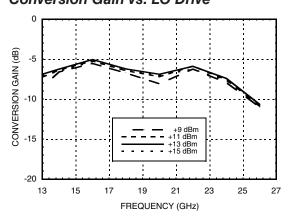


GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz


Conversion Gain vs. Temperature

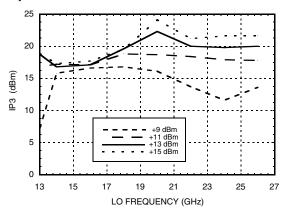

Isolation

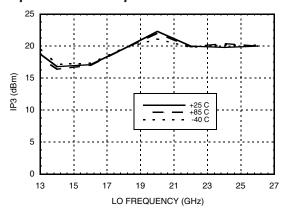

Conversion Gain vs. LO Drive


Return Loss

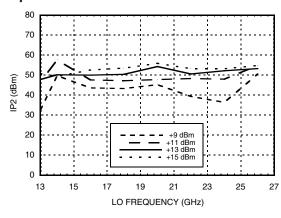
IF Bandwidth

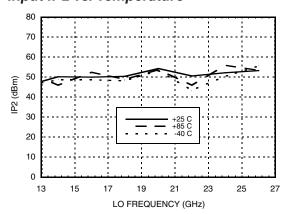
Upconverter Performance Conversion Gain vs. LO Drive

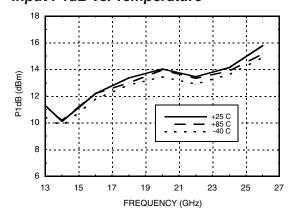




GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz


Input IP3 vs. LO Drive *


Input IP3 vs. Temperature *


Input IP2 vs. LO Drive *

Input IP2 vs. Temperature *

Input P1dB vs. Temperature

MxN Spurious Outputs

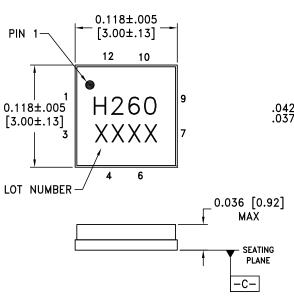
	nLO				
mRF	0	1	2	3	4
0	xx	-2	17	xx	xx
1	18	0	38	50	78
2	82	74	71	65	84
3	xx	90	95	77	90
4	xx	xx	93	98	104

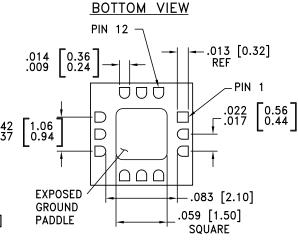
RF = 18 GHz @ -10 dBm

LO = 17 GHz @ +13 dBm

All values in dBc below the IF output power level.

^{*} Two-tone input power = -10 dBm each tone, 1 MHz spacing.


GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz


Absolute Maximum Ratings

RF / IF Input	+15 dBm
LO Drive	+27 dBm
Channel Temperature	150 °C
Continuous Pdiss (Ta = 85 °C) (derate 3.95 mW/°C above 85 °C)	260 mW
Thermal Resistance (junction to ground paddle)	253 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA.
- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER NICKEL.
- 3. DIMENSIONS ARE IN INCHES (MILLIMETERS).
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, BLACK INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
- 6. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM C -
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC260LC3B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H260 XXXX

^[1] Max peak reflow temperature of 260 $^{\circ}\text{C}$

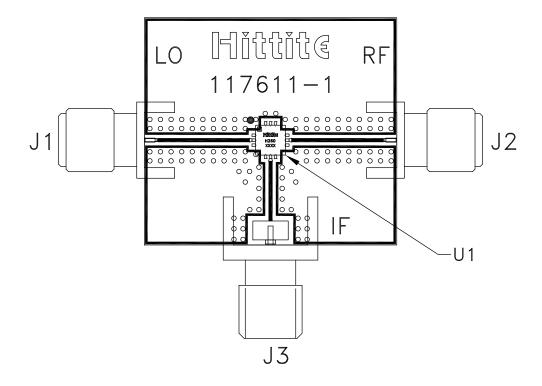
^{[2] 4-}Digit lot number XXXX

ANALOGDEVICES

v05.0414

GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 3, 4, 6, 7, 9	GND	Package bottom must also be connected to RF/DC ground.	GND =
2	LO	This pin is DC coupled and matched to 50 Ohm.	LO 0
5	IF	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source or sink more than 2 mA of current or part non-function and possible part failure will result.	IF O T
8	RF	This pin is DC coupled and matched to 50 Ohm.	RF O
10, 11, 12	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	

GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz

Evaluation PCB

List of Materials for Evaluation PCB 109952 [1]

Item	Description
J1, J2	SRI SMA Connector
J3	Johnson SMA Connector
U1	HMC260LC3B Mixer
PCB [2]	117611 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25 RF

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Mixer category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

 HMC337-SX
 HMC404-SX
 mamx-009646-23dbml
 HMC339-SX
 HMC8192-SX
 MIQ24MS-2
 HMC220BMS8GETR
 M85C
 HMC554A-SX

 HMC8192LG
 HMC553AG-SX
 HMC521A-SX
 HMC521ACHIPS
 CMD258C4
 LT5511EFE
 MAMX-011023-SMB
 HMC399MS8TR

 HMC333TR
 HMC175MS8TR
 MAMXSS0012TR-3000
 109728-HMC129LC4
 CSM1-13
 SA612AD/01.112
 HMC785LP4ETR

 LT5526EUF#PBF
 LT5579IUH#PBF
 HMC773ALC3BTR
 HMC329ALC3B
 MY63H
 AD8343ARUZ-REEL7
 AD608AR

 AD608ARZ
 AD831APZ
 AD831APZ-REEL7
 AD8342ACPZ-REEL7
 AD8343ARUZ
 AD8344ACPZ-REEL7
 ADL5350ACPZ-R7

 ADL5363ACPZ-R7
 ADL5365ACPZ-R7
 ADL5801ACPZ-R7
 ADL5802ACPZ-R7
 HMC1056LP4BE
 HMC1057-SX
 HMC1063LP3E

 HMC1093-SX
 HMC1106-SX
 HMC129
 HMC143
 HMC143