

0.1 GHz to 8 GHz, GaAs, Nonreflective, SP4T Switch

Enhanced Product

HMC344ATCPZ-EP

FEATURES

Broadband frequency range: 0.1 GHz to 8 GHz Nonreflective 50 Ω design Low insertion loss: 1.7 dB at 6 GHz High isolation: 36 dB at 6 GHz High input linearity at 250 MHz to 8 GHz P1dB: 28 dBm typical IP3: 44 dBm typical Integrated 2 to 4 line decoder 16-lead, 3 mm × 3 mm LFCSP package ESD HBM rating: 250 V (Class 1A)

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range (–55°C to +125°C) Controlled manufacturing baseline One assembly/test site Product change notification Qualification data available on request

APPLICATIONS

Broadband telecommunications systems Fiber optics Switched filter banks Wireless Infrastructure below 8 GHz

GENERAL DESCRIPTION

The HMC344ATCPZ-EP is a broadband, nonreflective, singlepole, four-throw (SP4T) switch manufactured using a gallium arsenide (GaAs) metal semiconductor field effect transistor (MESFET) process. This switch offers high isolation, low insertion loss, and on-chip termination of the isolated ports.

The switch operates with a negative supply voltage (V_{EE}) range of -5 V to -3 V and requires two negative logic control voltages.

The HMC344ATCPZ-EP includes an on-chip, binary two-line to four-line decoder that provides logic control from two logic input lines.

The HMC344ATCPZ-EP comes in a 3 mm \times 3 mm, 16-lead LFCSP package and operates from a 0.1 GHz to 8 GHz frequency range.

Additional application and technical information can be found in the HMC344ALP3E data sheet.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700©2018 Analog Devices, Inc. All rights reserved.Technical Supportwww.analog.com

TABLE OF CONTENTS

Features	1
Enhanced Product Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4

ESD Caution	4
Pin Configuration and Function Descriptions	5
Interface Schematics	6
Typical Performance Charcteristics	7
Outline Dimensions	8
Ordering Guide	8

REVISION HISTORY

3/2018—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\text{EE}} = -3 \text{ V or } -5 \text{ V}$, control voltage (V_{CTL}) = 0 V or V_{EE} , case temperature (T_{CASE}) = 25°C, 50 Ω system, unless otherwise noted.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
FREQUENCY RANGE	f		0.1		8	GHz
INSERTION LOSS						
Between RFC and RF1 to RF4 (On)		0.1 GHz to 2 GHz		1.4	2.0	dB
		2 GHz to 4 GHz		1.4	2.0	dB
		4 GHz to 6 GHz		1.7	2.2	dB
		6 GHz to 8 GHz		2.1	2.5	dB
ISOLATION						
Between RFC and RF1 to RF4 (Off)		0.1 GHz to 2 GHz	39	43		dB
		2 GHz to 4 GHz	33	37		dB
		4 GHz to 6 GHz	32	36		dB
		6 GHz to 8 GHz	28	32		dB
RETURN LOSS						
RFC and RF1 to RF4 (On)		0.1 GHz to 2 GHz	12	16		dB
		2 GHz to 4 GHz	12	16		dB
		4 GHz to 6 GHz	11	16		dB
		6 GHz to 8 GHz	6	11		dB
RF1 to RF4 (Off)		0.1 GHz to 8 GHz	11	16		dB
SWITCHING						
Rise and Fall Time	trise, tfall	10% to 90% of radio frequency (RF) output		35		ns
On and Off Time	ton, toff	50% V _{CTL} to 90% of RF output		75		ns
INPUT LINEARITY ¹		f = 250 MHz to 8 GHz				
1 dB Power Compression	P1dB	$V_{EE} = -5 V$	23	28		dBm
		$V_{EE} = -3 V$		25		dBm
Third-Order Intercept	IP3	10 dBm per tone, 1 MHz spacing				
		$V_{EE} = -5 V$	40	44		dBm
		$V_{EE} = -3 V$		44		dBm
SUPPLY		V _{EE} pin				
Voltage	VEE		-5		-3	V
Current	IEE			2.5	6	mA
DIGITAL CONTROL INPUTS		CTLA and CTLB pins				
Voltage	VCTL					
Low	VINL	$V_{EE} = -5 V$	-3		0	V
		$V_{EE} = -3 V$	-1		0	V
High	V _{INH}	$V_{EE} = -5 V$	-5		-4.2	V
		$V_{EE} = -3 V$	-3		-2.2	V
Current	Істі					
Low	I _{INL}		1	40		μΑ
High	linh			0.10		μΑ
OPERATING TEMPERATURE			-55		+125	°C

¹ Input linearity performance degrades at frequencies less than 250 MHz.

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1.

Table 2.

Parameter	Rating
Negative Supply Voltage (VEE)	-7 V
Digital Control Input Voltage Range	V_{EE} – 0.5 V to +1 V
RF Input Power (See Figure 2)	
$f = 250 \text{ MHz}$ to 8 GHz, $T_{CASE} = 85^{\circ}C$	
$V_{EE} = -5 V$	
Through Path	31 dBm
Terminated Path	26.5 dBm
Hot Switching	22 dBm
$V_{EE} = -3 V$	
Through Path	28 dBm
Terminated Path	23.5 dBm
Hot Switching	19 dBm
Temperature	
Junction, T _J	150°C
Storage	-65°C to +150°C
Reflow	260°C
Junction to Case Thermal Resistance, θ_{JC}	
Through Path	107°C/W
Terminated Path	137°C/W
Electrostatic Discharge (ESD) Sensitivity	
Human Body Model (HBM)	250 V (Class 1A)

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

16637-002

Figure 3. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RF4	RF4 Port. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required if the RF line potential does not equal 0 V dc.
2, 3, 10, 11, 13	NIC	Not Internally Connected. These pins are not connected internally; however, all data shown in this data sheet is measured when these pins are connected to the RF/dc ground externally.
4	RF3	RF3 Port. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required if the RF line potential does not equal 0 V dc.
5, 14, 16	GND	Ground. These pins connect to the RF/dc ground of the PCB.
6	V _{EE}	Negative Supply Voltage Pin.
7	CTLB	Control Input 2 Pin. See Table 4 for the control voltage truth table.
8	CTLA	Control Input 1 Pin. See Table 4 for the control voltage truth table.
9	RF2	RF2 Port. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required if the RF line potential does not equal 0 V dc.
12	RF1	RF1 Port. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required if the RF line potential does not equal 0 V dc.
15	RFC	RF Common Port. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required if the RF line potential does not equal 0 V dc.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF/dc ground of the PCB.

Table 4. Control Voltage Truth Table

Digital Co	ntrol Input	RF Paths			
CTLA	CTLB	RFC to RF1	RFC to RF2	RFC to RF3	RFC to RF4
High	High	Insertion loss (on)	Isolation (off)	Isolation (off)	Isolation (off)
Low	High	Isolation (off)	Insertion loss (on)	Isolation (off)	Isolation (off)
High	Low	Isolation (off)	Isolation (off)	Insertion loss (on)	Isolation (off)
Low	Low	Isolation (off)	Isolation (off)	Isolation (off)	Insertion loss (on)

Enhanced Product

INTERFACE SCHEMATICS

Figure 4. RFC and RF1 to RF4 Interface Schematic

Figure 5. CTLA and CTLB Interface Schematic

Figure 6. VEE Interface Schematic

TYPICAL PERFORMANCE CHARCTERISTICS

Figure 7. Insertion Loss vs. Frequency at Various Temperatures, Between RFC and RF1

Figure 8. Input Compression vs. Frequency at Various Temperatures, $V_{EE} = -5 V$

Figure 9. Input Compression vs. Frequency at Various Temperatures, $V_{EE} = -3 V$

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
HMC344ATCPZ-EP-PT	–55°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-51
HMC344ATCPZ-EP-R7	–55°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-51

¹ All models are RoHS compliant parts.

©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D16637-0-3/18(0)

www.analog.com

Rev. 0 | Page 8 of 8

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Switch ICs category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11