## Typical Applications

Low noise MMIC VCO w/Divide-by-8 for Ku-Band applications such as:

- Point-to-Point Radios
- Point-to-Multi-Point Radios / LMDS
- VSAT

Functional Diagram


PACKAGE BASE

KU-BAND MMIC VCO WITH DIVIDE-BY-8 14-15 GHz

## Features

Pout: +7 dBm
Phase Noise: - $105 \mathrm{dBc} / \mathrm{Hz}$ @100 kHz Typ.
No External Resonator Needed
Single Supply: 5V @ 325 mA QSOP16G SMT Package

## General Description

The HMC398QS16G \& HMC398QS16GE are single chip GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC398QS16G \& HMC398QS16GE integrate resonators, negative resistance devices, varactor diodes and divide-by-8 prescalers. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +7 dBm typical from a 5 V supply voltage. The voltage controlled oscillator is packaged in a low cost, surface mount 16 leaded QSOP package with an exposed base for improved RF and thermal performance. The HMC398QS16G \& HMC398QS16GE require no external components

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vcc1}, \mathrm{Vcc} 2=+5.0 \mathrm{~V}$

| Parameter | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: |
| Frequency Range | 14.0-15.0 |  |  | GHz |
|  | $\begin{aligned} & +3 \\ & -9 \end{aligned}$ | $\begin{aligned} & +7 \\ & -6 \end{aligned}$ |  | dBm dBm |
| SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output |  | -105 |  | $\mathrm{dBc} / \mathrm{Hz}$ |
| Tune Voltage Vtune | 1.0 |  | 10.0 | V |
| Supply Current Icc 1 (Digital) <br> Icc 2 (RF)  |  | $\begin{gathered} \hline 65 \\ 260 \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| Tune Port Leakage Current (Vtune=10V) |  |  | 10 | $\mu \mathrm{A}$ |
| Output Return Loss |  | 2 |  | dB |
| Harmonics/Subharmonics $1 / 2$ <br> $3 / 2$  <br> $2 n d$  <br> $5 / 2$  |  | $\begin{aligned} & -20 \\ & -30 \\ & -12 \\ & -40 \end{aligned}$ |  | dBc <br> dBc <br> dBc <br> dBc |
| Pulling (into a 2.0:1 VSWR) |  | 4 |  | MHz pp |
| Pushing @ Vtune=5V |  | 30 |  | MHz/V |
| Frequency Drift Rate |  | 1.5 |  | $\mathrm{MHz} /{ }^{\circ} \mathrm{C}$ |

## HMC398QS16G / 398QS16GE

v03.0810

Frequency vs. Tuning Voltage, $\mathbf{T}=\mathbf{2 5}^{\circ} \mathrm{C}$


Sensitivity vs. Tuning Voltage, Vcc= +5V


SSB Phase Noise vs. Tuning Voltage


Frequency vs. Tuning Voltage, Vcc= +5V


## Output Power

vs. Tuning Voltage, Vcc= +5V


SSB Phase Noise @ Vtune= 5V


## Divided Output

Frequency vs. Tuning Voltage, Vcc= +5V


Divided Output
Power vs. Tuning Voltage, Vcc= +5V*


Divided Output
SSB Phase Noise @ Vtune=5V


Absolute Maximum Ratings

| Vcc1, Vcc2 | +5.5 |
| :--- | :--- |
| Storage Temperature | -65 to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature | -40 to $+85^{\circ} \mathrm{C}$ |
| Vtune | 0 to 11 V |

electrostatic sensitive device OBSERVE HANDLING PRECAUTIONS

Typical Supply Current vs. Vcc

| $\operatorname{Vcc}(\mathrm{V})$ | Icc $(\mathrm{mA})$ |
| :---: | :---: |
| 4.75 | 300 |
| 5.0 | 325 |
| 5.25 | 350 |

Note: VCO will operate over full voltage range shown above.

HMC398QS16G / 398QS16GE
v03.0810

## Outline Drawing

# (158 



## Package Information

| Part Number | Package Body Material | Lead Finish | MSL Rating | Package Marking ${ }^{[3]}$ |
| :---: | :---: | :---: | :---: | :---: |
| HMC398QS16G | Low Stress Injection Molded Plastic | Sn/Pb Solder | MSL1 $^{[1]}$ | HMC398 <br> XXXX |
| HMC398QS16GE | RoHS-compliant Low Stress Injection Molded Plastic | $100 \%$ matte Sn | MSL1 $^{[2]}$ | $\frac{\text { HMC398 }}{\text { XXXX }}$ |

[1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[3] 4-Digit lot number XXXX

## Pin Descriptions

| Pin Number | Function | Description | Interface Schematic |
| :---: | :---: | :---: | :---: |
| 1 | RFOUT | RF output (AC coupled). |  |
| $\begin{array}{r} 2,3,4,6,8,9 \\ 10,13,14,16 \end{array}$ | N/C | No Connection |  |
| 5 | VTUNE | Control Voltage Input. Modulation port bandwidth dependent on drive source impedance. |  |

HMC398QS16G / 398QS16GE
v03.0810

KU-BAND MMIC VCO WITH DIVIDE-BY-8
14-15 GHz

Pin Descriptions


## Typical Application Circuit



KU-BAND MMIC VCO WITH DIVIDE-BY-8
14-15 GHz

## Evaluation PCB



## List of Materials for Evaluation PCB $104711{ }^{[1]}$

| Item | Description |
| :--- | :--- |
| $\mathrm{J} 1-\mathrm{J} 4$ | PCB Mount SMA RF Connector |
| $\mathrm{J} 5-\mathrm{J} 6$ | 2 mm DC Header |
| $\mathrm{C} 1-\mathrm{C} 2$ | $10 \mu$ F Tantalum Capacitor |
| C3 - C6 | $1,000 \mathrm{pF}$ Capacitor 0402 Pkg. |
| U1 | HMC398QS16G / HMC398QS16GE VCO |
| PCB [2] | 104436 Eval Board |

[1] Reference this number when ordering complete evaluation PCB [2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for VCO Oscillators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAOC-009260-SMB003 MAOC-009261-PKG003 MAOC-009872-000000 MAOC-009264-PKG003 HMC384LP4ETR CVCO33CL-01100150 CVCO33CL-0415-0435 CVCO33CL-0750-0770 HMC1166LP5ETR HMC391LP4TR HMC1168LP5ETR MAOC-009260-PKG003 MAOC-009266-PKG003 HMC511LP5ETR HMC534LP5ETR HMC431LP4ETR HMC3587LP3BETR CVC055CC-1680-1680 CVCO33CL-0125-0200 CVCO45CL-0100-0140 CVCO45CL-0421-0441 CRBV55BE-1930-1990 MAX2609EUT+T HMC1160LP5E HMC1164LP5E HMC1166LP5E HMC1167LP5E HMC1168LP5E HMC587LC4BTR HMC732LC4B HMC358MS8GE HMC384LP4E HMC385LP4E HMC388LP4E HMC390LP4E HMC391LP4 HMC391LP4E HMC398QS16GE HMC401QS16GE HMC416LP4E HMC429LP4E HMC430LP4E HMC466LP4E HMC506LP4 HMC507LP5E HMC508LP5E HMC509LP5 HMC510LP5E HMC511LP5E HMC512LP5E

