
Typical Applications

High Dynamic Range Infrastructure:

- GSM, GPRS & EDGE
- CDMA & W-CDMA
- Cable Modem Termination Systems

MIXERS - HIGH IP3 - SMT 6

Functional Diagram

HMC402MS8 / 402MS8E

HIGH IP3 GaAs MMIC MIXER, 1.8 - 2.2 GHz

Features

Input IP3: +31 dBm High Side LO Ultra Small MSOP8 Package: 14.8mm² No External Components Included in the HMC-DK002 Designer's Kit

General Description

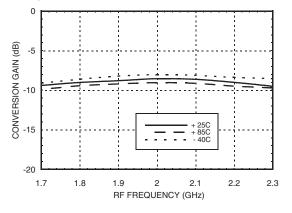
The HMC402MS8 & HMC402MS8E are high dynamic range passive MMIC mixers in plastic surface mount 8 lead Mini Small Outline Packages (MSOP) covering 1.8 to 2.2 GHz. Excellent input IP3 performance of +31 dBm for down conversion and +27 dBm for up conversion is provided for 2.5G & 3G GSM/CDMA based UMTS or PCS applications at an LO drive of +17dBm. With a 1dB compression of +21 dBm, the RF port will accept a wide range of input signal levels. Conversion loss is 8.5dB typical and LO isolations are maintained at 24 to 30 dB. This miniature single-ended monolithic GaAs FET mixer does not require any external components or bias. The broad 50 to 500 MHz IF frequency response will satisfy many UMTS/PCS transmit or receive frequency plans configured for high side LO. The HMC402MS8(E) input IP3 performance coupled with its high P1dB rivals traditional active FET mixers while offering a much smaller 14.8mm² standard IC footprint, and no DC bias.

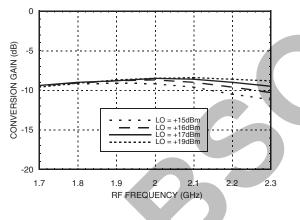
Electrical Specifications, $T_A = 25 \degree C$, LO = +17 dBm, IF = 300 MHz*

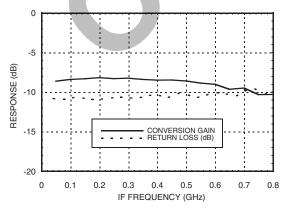
v02.0705

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF		1.8 - 2.0			2.0 - 2.2		GHz
Frequency Range, LO		1.85 - 2.5			2.05 - 2.53		GHz
Frequency Range, IF	DC - 500 DC - 330			MHz			
Conversion Loss		8.8	10.5		8.5	10.5	dB
Noise Figure (SSB)		8.8	10.5		8.5	10.5	dB
LO to RF Isolation	24	30		21	25		dB
LO to IF Isolation	19	24		24	28		dB
IP3 (Input)	27	30		27	31		dBm
1 dB Gain Compression (Input)	18	21		18	22		dBm
LO Input Drive Level (Typical)		+16 to +18			+16 to +18		dBm

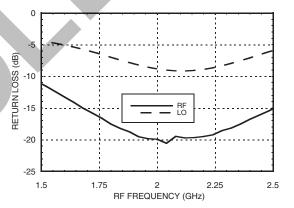
*Unless otherwise noted, all measurements performed as a downconverter with high side LO & IF = 300 MHz.

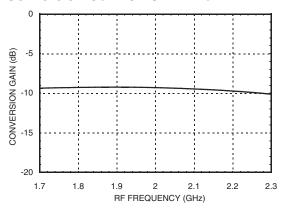

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v02.0705


Conversion Gain vs. Temperature @ LO = +17 dBm

Conversion Gain vs. LO Drive

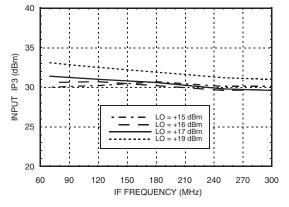

IF Bandwidth @ LO = +17 dBm

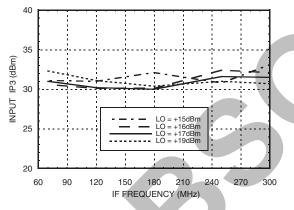

HIGH IP3 GaAs MMIC MIXER, 1.8 - 2.2 GHz

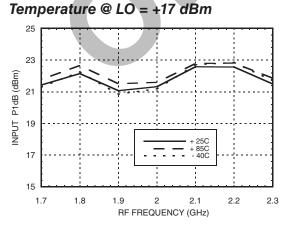
Return Loss @ LO = +17 dBm

Unconverter Performance Conversion Gain @ LO = +17 dBm

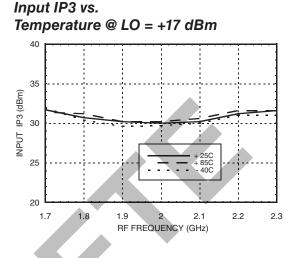
*Unless otherwise noted, all measurements performed as a downconverter with high side LO & IF = 300 MHz.


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

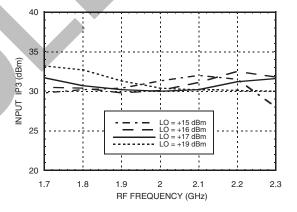

v02.0705

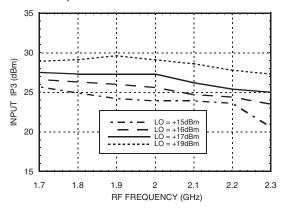

Input IP3 vs. IF Frequency, RF = 1.95 GHz

Input IP3 vs. IF Frequency, RF = 2.15 GHz



Input P1dB vs.




HIGH IP3 GaAs MMIC MIXER, 1.8 - 2.2 GHz

Input IP3 vs. LO Drive

Upconverter IP3 vs. LO Drive, IF = 200 MHz

*Unless otherwise noted, all measurements performed as a downconverter with high side LO & IF = 300 MHz.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Input IP2 vs. Temperature

@ LO = +17 dBm

RoHS

40

35

30

25

20

mRF

0

1

3

4

1.6

1.7

18

MxN Spurious Outputs

0

хх

5

62

81

77

RF Freq = 1.9 GHz @ -10 dBm LO Freq = 2.2 GHz @ +17 dBm

Measured as a downconverter,

1.9

1

-7

0

64

81

81

INPUT IP2 (dBm)

v02.0705

+ 250

2

RF FREQUENCY (GHz)

85C 40C

21

nLO

2

-3

27

48

82

80

22

3

-1

54

65

81

83

23

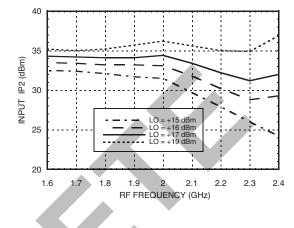
24

4

11

30

70


80

82

HMC402MS8 / 402MS8E

HIGH IP3 GaAs MMIC MIXER, 1.8 - 2.2 GHz

Input IP2 vs. LO Drive

Harmonics of LO

	nLO Spur @ RF Port			
LO Freq (GHz)	1	2	3	4
1.8	40	30	51	57
2	30	29	51	53
2.2	26	32	51	50
2.4	24	36	53	49
2.6	23	43	59	53
2.8	22	41	51	71
LO = +17 dBm				

All values are in dBc below input LO level @ RF port.

Absolute Maximum Ratings

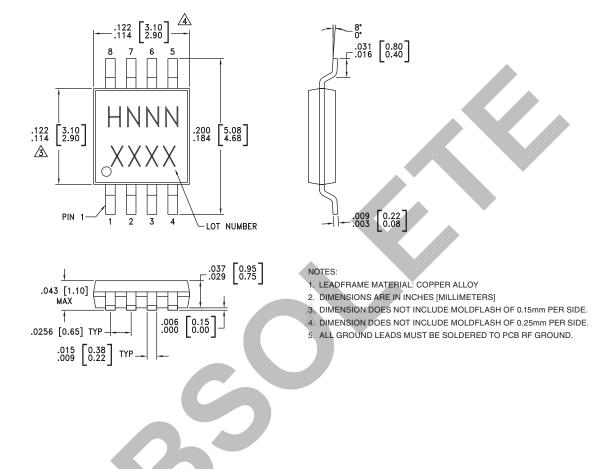
All values in dBc relative to the IF power level.

RF/IF Input	+27 dBm	
LO Drive	+27 dBm	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
IF DC Current	±40 mA	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

*Unless otherwise noted, all measurements performed as a downconverter with high side LO & IF = 300 MHz.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



ROHS V

v02.0705

HIGH IP3 GaAs MMIC MIXER, 1.8 - 2.2 GHz

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC402MS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H402 XXXX
HMC402MS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H402</u> XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

v02.0705

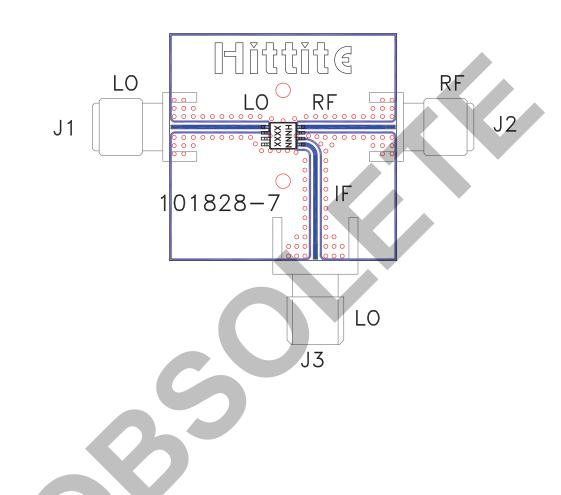
HIGH IP3 GaAs MMIC MIXER, 1.8 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1	LO	This pin is AC coupled & matched to 50 Ohms from 1.8 to 2.2 GHz. Blocking capacitors are required if line potential is not equal to 0V.		
2, 4	N/C	Not connected.		
3, 6, 7	GND	This pin must be connected to RF ground.		
5	IF Port	This pin is DC coupled. For applications not requiring operation to DC this port should be DC blocked externally using a series capacitor. Choose value of capacitor to pass IF frequency desired. For operation to DC, this pin must not sink/source more than 40 mA of current or failure may result.		
8	RF Port	This pin is DC coupled & matched to 50 Ohms from 1.8 to 2.2 GHz	RF O	

MIXERS - HIGH IP3 - SMT

9



v02.0705

HIGH IP3 GaAs MMIC MIXER, 1.8 - 2.2 GHz

Evaluation PCB

List of Materials for Evaluation PCB 101830^[1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
U1	HMC402MS8 / HMC402MS8E Mixer
PCB [2]	101828 Eval Board

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v02.0705

Notes:

HIGH IP3 GaAs MMIC MIXER, 1.8 - 2.2 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent or rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Mixer category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

HMC337-SX HMC404-SX mamx-009646-23dbml HMC339-SX HMC8192-SX MIQ24MS-2 HMC220BMS8GETR M85C HMC554A-SX HMC8192LG HMC521A-SX HMC521ACHIPS CMD258C4 LT5511EFE MAMX-011023-SMB HMC399MS8TR HMC333TR HMC214MS8TR HMC175MS8TR MAMXSS0012TR-3000 109728-HMC129LC4 CSM1-13 SA612AD/01.112 HMC785LP4ETR LT5579IUH#PBF HMC773ALC3BTR HMC558ALC3B HMC329ALC3B MY63H AD8343ARUZ-REEL7 AD608AR AD608ARZ AD831APZ AD831APZ-REEL7 AD8342ACPZ-REEL7 AD8343ARUZ AD8344ACPZ-REEL7 ADL5350ACPZ-R7 ADL5363ACPZ-R7 ADL5365ACPZ-R7 ADL5801ACPZ-R7 ADL5802ACPZ-R7 HMC1056LP4BE HMC1057-SX HMC1063LP3E HMC1093-SX HMC1106-SX HMC129 HMC143 HMC400MS8ETR