

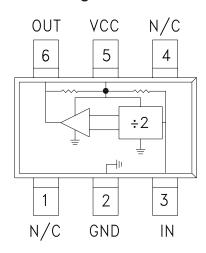
SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 8 GHz

Typical Applications

Prescaler for DC to C Band PLL Applications:

- UNII, Point-to-Point & VSAT Radios
- 802.11a & HiperLAN WLAN
- Fiber Optic
- Cellular / 3G Infrastructure

Features


Ultra Low SSB Phase Noise: -148 dBc/Hz

Single-Ended I/O's

Output Power: -3 to -9 dBm

Single DC Supply: +3V @ 42 mA 9 mm² Ultra Small Package: SOT26

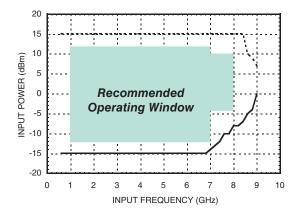
Functional Diagram

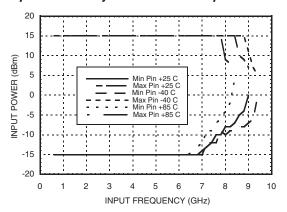
General Description

The HMC432(E) is a low noise Divide-by-2 Static Divider utilizing InGaP GaAs HBT technology in ultra small surface mount SOT26 plastic packages. This device operates from DC (with a square wave input) to 8 GHz input frequency with a single +3V DC supply. Single-ended inputs and outputs reduce component count and cost. The low additive SSB phase noise of -148 dBc/Hz at 100 kHz offset helps the user maintain good system noise performance.

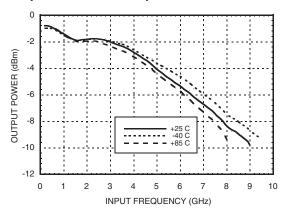
Electrical Specifications, $T_A = +25^{\circ}$ C, 50 Ohm System, Vcc= +3V

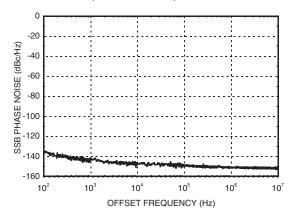
Parameter	Conditions	Min.	Тур.	Max.	Units
Maximum Input Frequency		8	8.5		GHz
Minimum Input Frequency	Sine Wave Input. [1]		0.2		GHz
Input Power Range	Fin= 1 to 7 GHz Fin= 7 to 8 GHz	-12 -4		+12 +10	dBm
Output Power	Fin= 4 GHz Fin= 8 GHz	-6 -12	-3 -9		dBm dBm
Reverse Leakage	RF Output Terminated, Fin= 4 GHz, Pin= 0 dBm		-30		dBm
SSB Phase Noise (100 kHz offset)	Pin= 0 dBm, Fin= 4 GHz		-148		dBc/Hz
Output Transition Time	Pin= 0 dBm, Fout= 882 MHz		145		ps
Supply Current (Icc)	Vcc= 3.0 V		42	56	mA

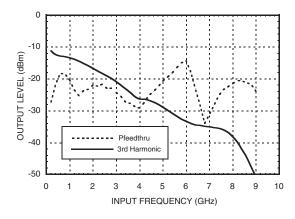

^{1.} Divider will operate down to DC for square-wave input signal.

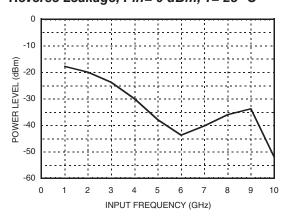


SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 8 GHz


Input Sensitivity Window, T= 25 °C

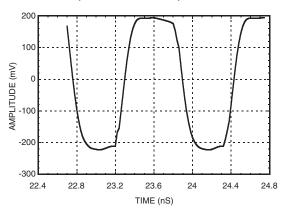

Input Sensitivity Window vs. Temperature


Output Power vs. Temperature


SSB Phase Noise Performance, Pin= 0 dBm, T= 25 °C

Output Harmonic Content, Pin= 0 dBm, T= 25 °C

Reverse Leakage, Pin= 0 dBm, T= 25 °C



SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 8 GHz

Output Voltage Waveform, Pin= 0 dBm, Fout= 882 MHz, T= 25 °C

Absolute Maximum Ratings

RF Input Power (Vcc = +3V)	15 dBm
Nominal +3V Supply to GND	-0.3V to 3.5V
Max Peak Flow Temperature	260 °C
Storage Temperature	-65 to +125 °C
ESD Sensitivity (HBM)	150 V

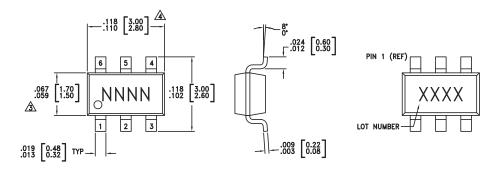
DC blocking capacitors are required at RF input and RF output ports. Choose value for lowest frequency of operation.

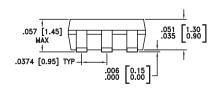
Reliability Information

Junction Temperature to Maintain 1 Million Hour MTTF	135 °C
Nominal Junction Temperature (T = 85 °C)	99 °C
Thermal Resistance (Junction to GND Paddle, 3V Supply)	108 °C/W
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
2.70	34
3.00	42
3.30	50


Note: Divider will operate over full voltage range shown above



SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 8 GHz

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

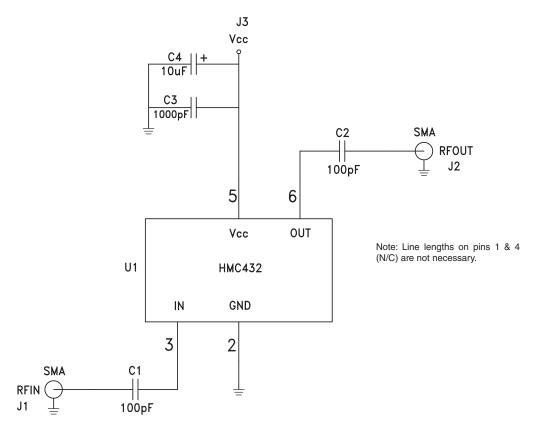
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC432	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H432 XXXX
HMC432E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	432E XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Description

Pin Number	Function	Description	Interface Schematic
1, 4	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2	GND	Pin must connect to RF/DC ground.	○ GND —
3	IN	RF input must be DC blocked.	Vcc 3V 50n



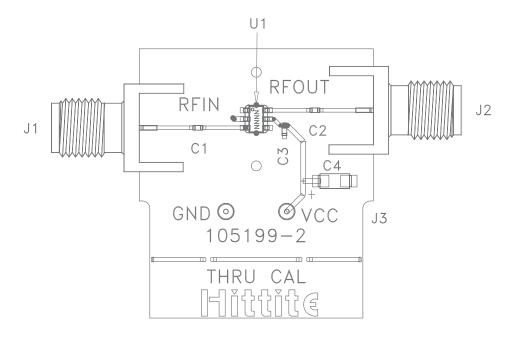
SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 8 GHz

Pin Description (Continued)

Pin Number	Function	Description	Interface Schematic
5	Vcc	Supply voltage 3V ± 0.3V.	Vcc Ο 8pF 71Ω
6	ОИТ	Divided output must be DC blocked.	50n OUT

Application Circuit

Note:


DC blocking capacitor values (C1, C2) and DC decoupling capacitor values (C3, C4) are chosen for lowest frequency of operation.

SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 105675 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3 - J4	DC Pin
C1 - C2	100 pF Capacitor, 0402 Pkg.
C3	1000 pF Capacitor, 0402 Pkg.
C4	10 μF Tantalum Capacitor, 1206 Pkg.
U1	HMC432 / HMC432E Divide-by-2
PCB [2]	105199 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Prescaler category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

UXD20P UXN14M9P MX1DS10P UXN14M32K HMC492LP3TR HMC434TR HMC433TR HMC394LP4TR MC12093MNR4G

NB7N017MMNG HMC437MS8GTR HMC434SRJZ-EP-PT HMC365S8G HMC362S8G ADF5000BCPZ ADF5001BCPZ ADF5002BCPZ

HMC988LP3ETR HMC361G8 HMC361S8G HMC361S8GETR HMC363G8 HMC363S8G HMC363S8GETR HMC365G8

HMC365S8GETR HMC394LP4ETR HMC437MS8G HMC447LC3 HMC447LC3TR HMC492LP3ETR HMC492LP3 HMC493LP3E

HMC433 HMC432ETR HMC434ETR HMC434E HMC432 HMC432E HMC794LP3E HMC859LC3 HMC983LP5E HMC438MS8GTR

ADMV2101BRHZ UXM15P HMC437MS8GETR HMC438MS8G HMC438MS8GE HMC438MS8GETR MC12026ADG