

0.2 GHz to 8 GHz, GaAs, HBT MMIC, Divide by 8 Prescaler

Enhanced Product HMC434-EP

FEATURES

Ultralow SSB phase noise: -150 dBc/Hz typical

Single-ended input/outputs RF output power: -2 dBm typical Single-supply operation: 3 V

Ultrasmall, surface-mount, 2.90 mm \times 2.80 mm, 6-lead SOT-23

package

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Extended industrial temperature range: -55°C to +105°C
Controlled manufacturing baseline

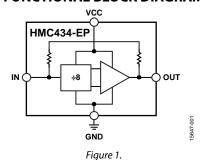
1 assembly/test site 1 fabrication site Product change notification Qualification data available upon request

APPLICATIONS

DC to C band PLL prescalers
Very small aperture terminal (VSAT) radios
Unlicensed national information infrastructure (UNII) and point to point radios

IEEE 802.11a and high performance radio local area network (HiperLAN) WLAN

Fiber optics


Cellular/3G infrastructure

GENERAL DESCRIPTION

The HMC434-EP is a low noise, static, divide by 8 prescaler monolithic microwave integrated circuit (MMIC) utilizing indium gallium phosphide/gallium arsenide (InGaP/GaAs) heterojunction bipolar transistor (HBT) technology in an ultrasmall surface-mount 6-lead SOT-23 package.

The HMC434-EP operates from near dc (square wave) or 0.2 GHz (sine wave) to 8 GHz input frequency with a single 3 V dc supply.

FUNCTIONAL BLOCK DIAGRAM

The HMC434-EP features single-ended inputs and outputs for reduced component count and cost. The low additive single sideband (SSB) phase noise of –150 dBc/Hz at 100 kHz offset helps the user maintain optimal system noise performance.

Additional application and technical information can be found in the HMC434 data sheet.

HMC434-EP Enhanced Product

TABLE OF CONTENTS

3/2017—Revision 0: Initial Version

Features	. 1
Enhanced Product Features	. 1
Applications	. 1
Functional Block Diagram	. 1
General Description	. 1
Revision History	. 2
Specifications	. 3
Absolute Maximum Ratings	. 4
REVISION HISTORY	
3/2019—Rev. A to Rev. B	
Changes to Figure 11	. 6
8/2017—Rev. 0 to Rev. A	
Changes to Features Section and General Description Section	. 1
Added Endnote 2 to Table 1	3

Thermal Resistance	4
ESD Caution	4
Pin Configuration and Function Descriptions	5
Interface Schematics	5
Typical Performance Characteristics	6
Outline Dimensions	7
Ordering Guide	7

Enhanced Product HMC434-EP

SPECIFICATIONS

 V_{CC} = 3 V, T_A = 25°C, 50 Ω system, unless otherwise noted. P_{IN} is input power.

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions / Comments
RADIO FREQUENCY (RF) INPUT					
Frequency ^{1, 2}	0.2		8	GHz	Sine wave input
Power	-10	0	+10	dBm	$f_{IN} = 1.0 \text{ GHz to } 3.0 \text{ GHz}$
	0	0	10	dBm	$f_{IN} = 3.0 \text{ GHz to } 8.0 \text{ GHz}$
RF OUTPUT					
SSB Phase Noise		-150		dBc/Hz	100 kHz offset, $P_{IN} = 0$ dBm, $f_{IN} = 4.0$ GHz
Power	-5	-2		dBm	$f_{IN} = 1.0 \text{ GHz to } 8.0 \text{ GHz}$
REVERSE LEAKAGE		-25		dBm	$P_{IN} = 0$ dBm, $f_{IN} = 4.0$ GHz, output terminated
SUPPLY					
Voltage (Vcc)	2.85	3	3.15	V	
Current (Icc)		62	83	mA	

¹ Below 200 MHz, a square wave input is required. ² For stable operation without an input signal, refer to the AN-1463 Application Note, Frequency Divider Operation and Compensation with No Input Signal.

HMC434-EP Enhanced Product

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating		
Supply Voltage (V _{CC})	-0.3 V to +3.5 V		
RF Input Power ($V_{CC} = 3 \text{ V}$)	13 dBm		
Temperature			
Operating	−55°C to +105°C		
Storage	−65°C to +125°C		
Junction, T _J	135°C		
Nominal ($T_A = 105$ °C)	119°C		
Reflow	260°C		
ESD Sensitivity			
Human Body Model (HBM)	Class 0		

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ_{JC} is the junction to case thermal resistance.

Table 3. Thermal Resistance

Package Type	θ_{JA}^{1}	θ_{JC}^2	Unit
RJ-6	359	70	°C/W

¹ Simulated values per JEDEC JESD51-12 standards.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Junction to GND package pin.

Enhanced Product HMC434-EP

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. NOT INTERNALLY CONNECTED. THESE PINS CAN
BE CONNECTED TO RF AND DC GROUND WITHOUT
AFFECTING PERFORMANCE. THE NIC PINS ARE
TYPICALLY TIED TO GND FOR ENHANCED
THERMAL PERFORMANCE (BUT NOT REQUIRED).

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 4	NIC	Not Internally Connected. These pins can be connected to RF and dc ground without affecting performance. The NIC pins are typically tied to GND for enhanced thermal performance (but not required).
2	GND	Ground. This pin must be connected to both RF and dc ground.
3	IN	RF Input. This pin must be dc blocked.
5	VCC	Supply Voltage (3 V).
6	OUT	RF Output. This pin must be dc blocked.

INTERFACE SCHEMATICS

Figure 3. GND Interface Schematic

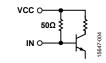


Figure 4. IN Interface Schematic

Figure 5. OUT Interface Schematic

Figure 6. VCC Interface Schematic

HMC434-EP Enhanced Product

TYPICAL PERFORMANCE CHARACTERISTICS

In Figure 9, PFEEDTHROUGH is the power of the output spectrum at the input frequency.

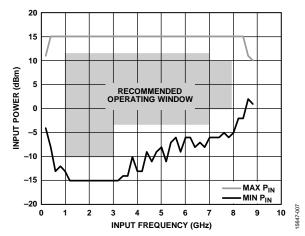


Figure 7. Input Sensitivity Window

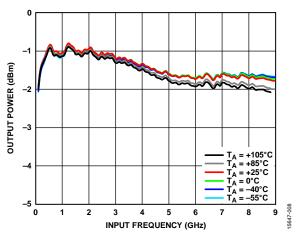


Figure 8. Output Power vs. Frequency at Various Temperatures

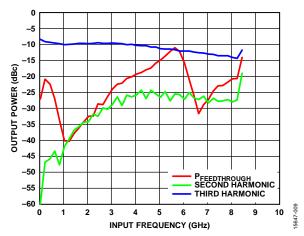


Figure 9. Output Harmonic Content ($P_{IN} = 0 dBm$)

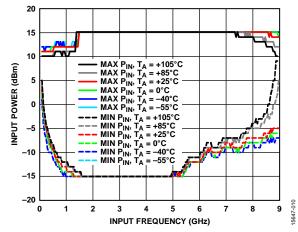


Figure 10. Input Sensitivity Window at Various Temperatures

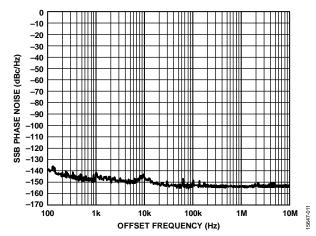


Figure 11. SSB Phase Noise ($P_{IN} = 0 dBm$)

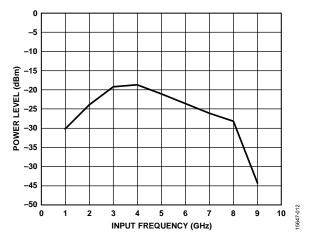


Figure 12. Reverse Leakage ($P_{IN} = 0 dBm$)

Enhanced Product HMC434-EP

OUTLINE DIMENSIONS

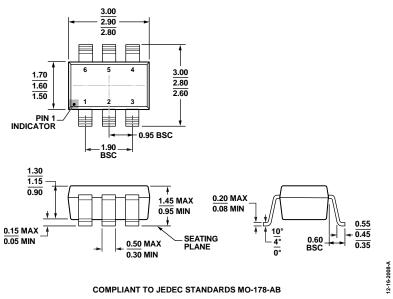


Figure 13. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Marking Code
HMC434SRJZ-EP-PT	−55°C to +105°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	34P
HMC434SRJZ-EP-R7	−55°C to +105°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	34P

¹ Z = RoHs Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Prescaler category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

UXD20P UXN14M9P MX1DS10P UXC20P UXN14M32K HMC492LP3TR HMC434TR HMC433TR HMC394LP4TR

MC12093MNR4G NB7N017MMNG HMC437MS8GTR HMC434SRJZ-EP-PT HMC365S8G HMC362S8G ADF5000BCPZ

ADF5001BCPZ ADF5002BCPZ HMC988LP3ETR HMC361G8 HMC361S8G HMC361S8GETR HMC363G8 HMC363S8G

HMC363S8GETR HMC365G8 HMC365S8GETR HMC394LP4ETR HMC437MS8G HMC447LC3 HMC447LC3TR HMC492LP3ETR

HMC492LP3 HMC493LP3E HMC433 HMC432ETR HMC434ETR HMC434E HMC432 HMC432E HMC794LP3E HMC859LC3

HMC983LP5E HMC438MS8GTR ADMV2101BRHZ UXM15P HMC437MS8GETR HMC438MS8G HMC438MS8GE

HMC438MS8GETR