

HMC453QS16G / 453QS16GE

v01.0205

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Typical Applications

The HMC453QS16G / HMC453QS16GE is ideal for applications requiring a high dynamic range amplifier:

- GSM, GPRS & EDGE
- CDMA & W-CDMA
- CATV/Cable Modem
- Fixed Wireless & WLL

Functional Diagram

Features

Output IP3: +51 dBm

21.5 dB Gain @ 400 MHz

8 dB Gain @ 2100 MHz

45% PAE @ +32 dBm Pout

+25 dBm CDMA2000 Channel Power@ -45 dBc ACP

Single +5V Supply

Integrated Power Control (VPD)

QSOP16G SMT Package: 29.4 mm²

General Description

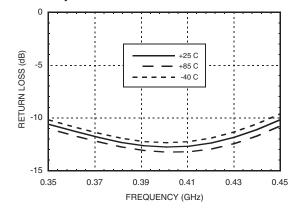
The HMC453QS16G & HMC453QS16GE are high dynamic range GaAs InGaP Heterojunction Bipolar Transistor (HBT) 1.6 watt MMIC power amplifiers operating between 0.4 and 2.2 GHz. Packaged in a miniature 16 lead QSOP plastic package, the amplifier gain is typically 21.5 dB at 0.4 GHz and 8 dB at 2.1 GHz. Utilizing a minimum number of external components and a single +5V supply, the amplifier output IP3 can be optimized to +47 dBm at 0.4 GHz or +51 dBm at 2.1 GHz. The power control (VPD) can be used for full power down or RF output power/current control. The high output IP3 and PAE make the HMC453QS16G(E) ideal power amplifiers for Cellular/PCS/3G, WLL, ISM and Fixed Wireless applications.

Electrical Specifications, $T_A = +25$ °C, Vs = +5V, VPD = +5V [1]

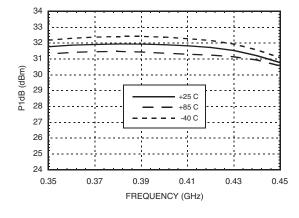
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		400 - 410)		450 - 49	6		810 - 96	0	1	710 - 199	90	2	010 - 21	70	MHz
Gain	19	21.5		18	20.5		12	15		6	9		6	8		dB
Gain Variation Over Temperature		0.012	0.02		0.012	0.02		0.012	0.02		0.012	0.02		0.012	0.02	dB / °C
Input Return Loss		12			15			12			10			15		dB
Output Return Loss		10			10			15			13			18		dB
Output Power for 1dB Compression (P1dB)	29	32		29	32		29	32		28.5	31.5		30	33		dBm
Saturated Output Power (Psat)		32.25			32.25			32.5			32			33.5		dBm
Output Third Order Intercept (IP3) [2]	44	47		47	50		46	49		44	50		48	51		dBm
Noise Figure		7			8.5			7			7.5			6.5		dB
Supply Current (Icq)		725			725			725			725			725		mA
Control Current (IPD)		12			12			12			12			12		mA


^[1] Specifications and data reflect HMC453QS16G measured using the respective application circuits for each designated frequency band found herein. Contact the HMC Applications Group for assistance in optimizing performance for your application.

[2] Two-tone input power of -10 dBm per tone, 1 MHz spacing.

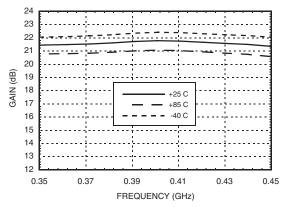


Broadband Gain & Return Loss @ 400 MHz

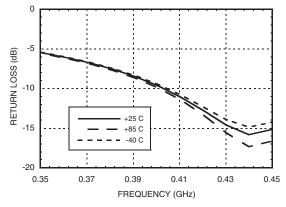


Input Return Loss

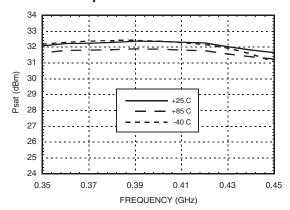
vs. Temperature @ 400 MHz



P1dB vs. Temperature @ 400 MHz

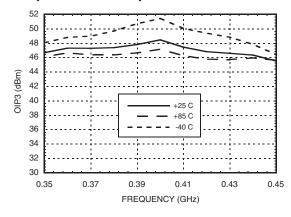


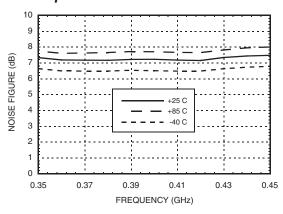
InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Gain vs. Temperature @ 400 MHz

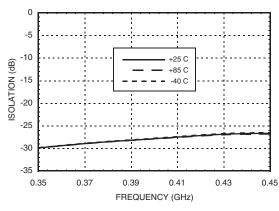
Output Return Loss vs. Temperature @ 400 MHz

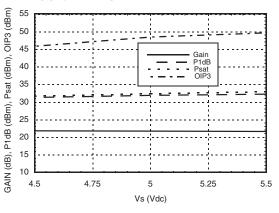
Psat vs. Temperature @ 400 MHz

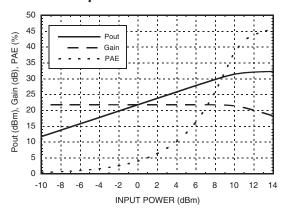


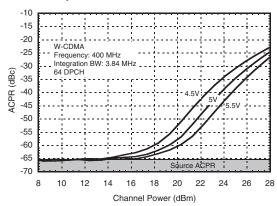


InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Output IP3 vs. Temperature @ 400 MHz


Noise Figure vs. Temperature @ 400 MHz

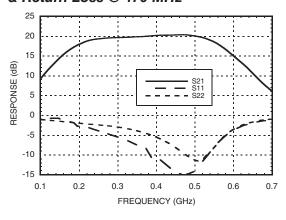

Reverse Isolation vs. Temperature @ 400 MHz

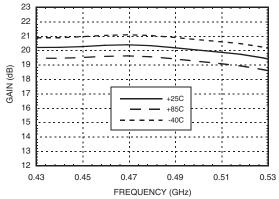

Gain, Power & IP3 vs. Supply Voltage @ 400 MHz

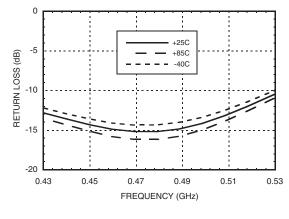
Power Compression @ 400 MHz

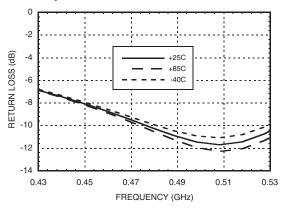
ACPR vs. Supply Voltage @ 400 MHz W-CDMA, 64 DPCH

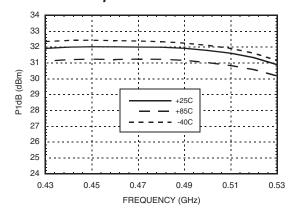
InGaP HBT 1.6 WATT POWER

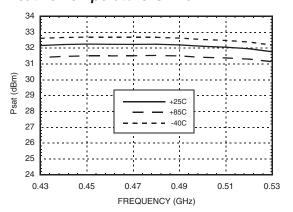

AMPLIFIER, 0.4 - 2.2 GHz


v01.0205


Broadband Gain & Return Loss @ 470 MHz

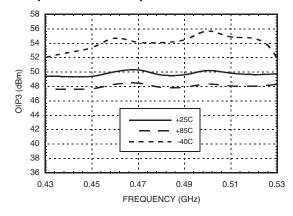

Gain vs. Temperature @ 470 MHz

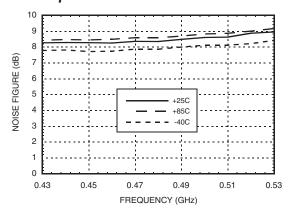

Input Return Loss vs. Temperature @ 40 MHz


Output Return Loss vs. Temperature @ 470 MHz

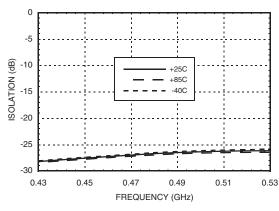
P1dB vs. Temperature @ 470 MHz

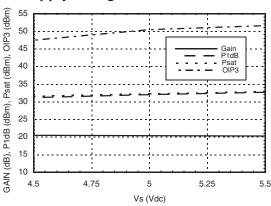
Psat vs. Temperature @ 470 MHz

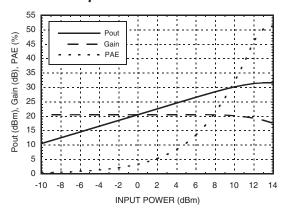


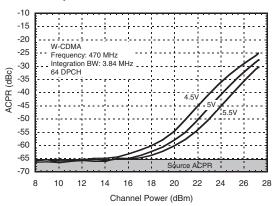


InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

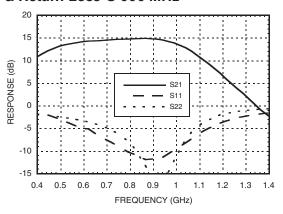

Output IP3 vs. Temperature @ 470 MHz

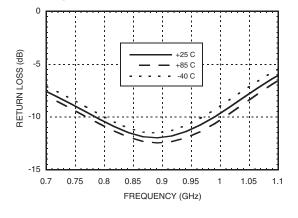

Noise Figure vs. Temperature @ 470 MHz

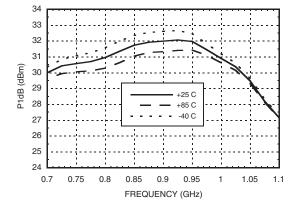

Reverse Isolation vs. Temperature @ 470 MHz


Gain, Power & IP3 vs. Supply Voltage @ 470 MHz

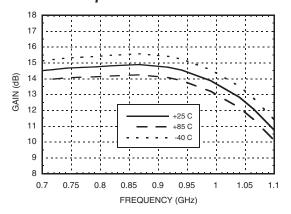
Power Compression @ 470 MHz


ACPR vs. Supply Voltage @ 470 MHz W-CDMA, 64 DPCH

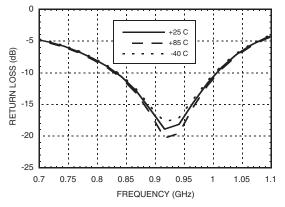



Broadband Gain & Return Loss @ 900 MHz

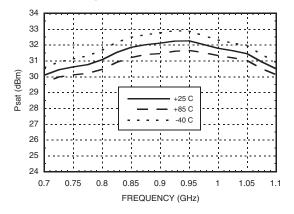
Input Return Loss vs. Temperature @ 900 MHz



P1dB vs. Temperature @ 900 MHz

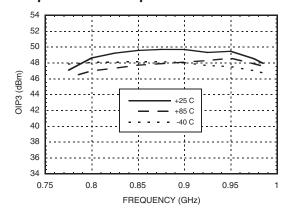


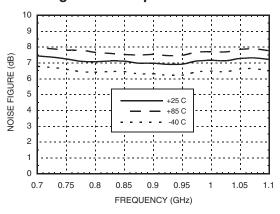
InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Gain vs. Temperature @ 900 MHz

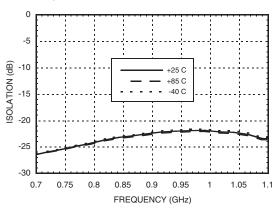
Output Return Loss vs. Temperature @ 900 MHz

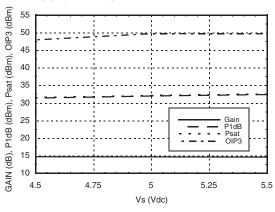
Psat vs. Temperature @ 900 MHz

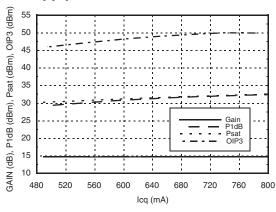


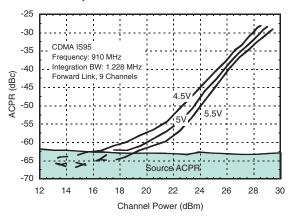


InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Output IP3 vs. Temperature @ 900 MHz


Noise Figure vs. Temperature @ 900 MHz


Reverse Isolation vs. Temperature @ 900 MHz

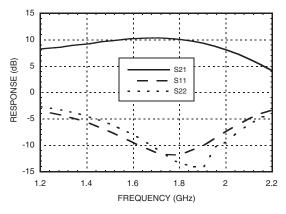

Gain, Power & IP3 vs. Supply Voltage @ 900 MHz

Gain, Power & IP3 vs. Supply Current @ 900 MHz*

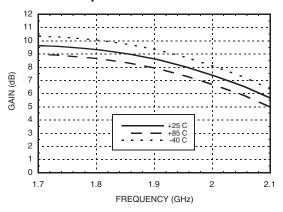
ACPR vs. Supply Voltage @ 910 MHz CDMA IS95, 9 Channels Forward

^{*} Icq is controlled by varying VPD.

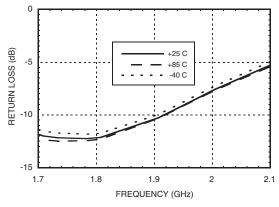
InGaP HBT 1.6 WATT POWER

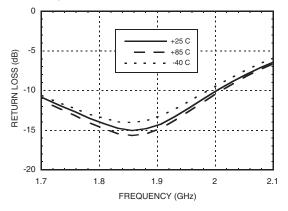


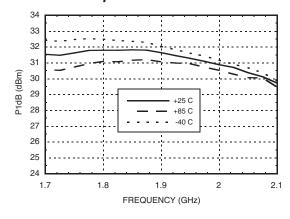
v01.0205

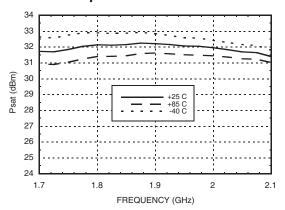


AMPLIFIER, 0.4 - 2.2 GHz


Broadband Gain & Return Loss @ 1900 MHz

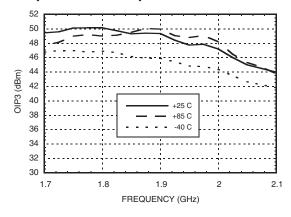

Gain vs. Temperature @ 1900 MHz

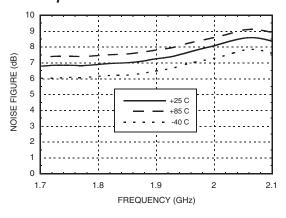

Input Return Loss vs. Temperature @ 1900 MHz


Output Return Loss vs. Temperature @ 1900 MHz

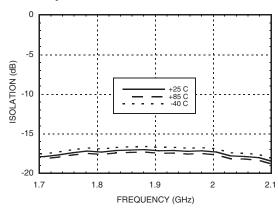
P1dB vs. Temperature @ 1900 MHz

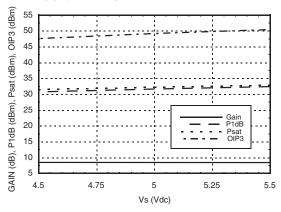
Psat vs. Temperature @ 1900 MHz

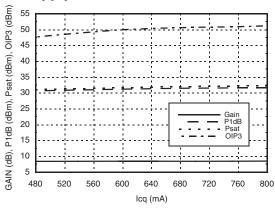


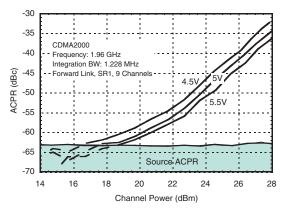


InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Output IP3 vs. Temperature @ 1900 MHz


Noise Figure vs. Temperature @ 1900 MHz


Reverse Isolation vs. Temperature @ 1900 MHz

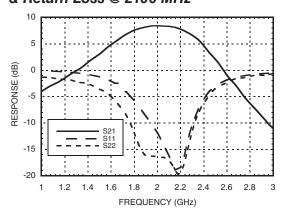

Gain, Power & IP3 vs. Supply Voltage @ 1900 MHz

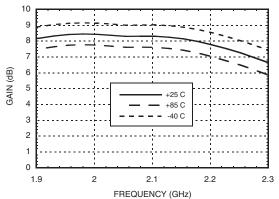
Gain, Power & IP3 vs. Supply Current @ 1900 MHz*

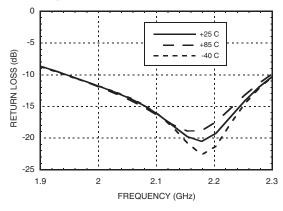
ACPR vs. Supply Voltage @ 1960 MHz CDMA 2000, 9 Channels Forward

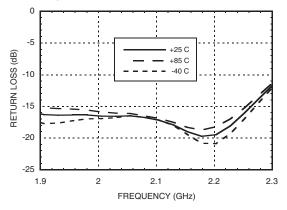
^{*} Icq is controlled by varying VPD.

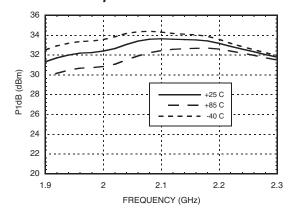
InGaP HBT 1.6 WATT POWER

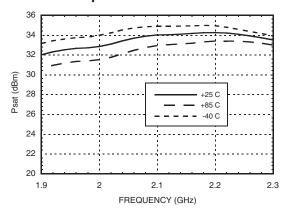

AMPLIFIER, 0.4 - 2.2 GHz


v01.0205


Broadband Gain & Return Loss @ 2100 MHz

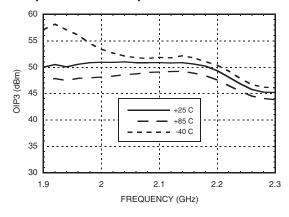

Gain vs. Temperature @ 2100 MHz

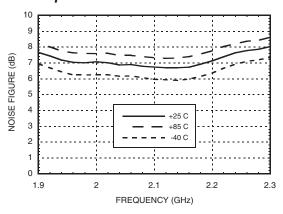

Input Return Loss vs. Temperature @ 2100 MHz


Output Return Loss vs. Temperature @ 2100 MHz

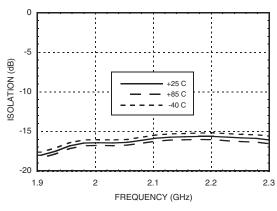
P1dB vs. Temperature @ 2100 MHz

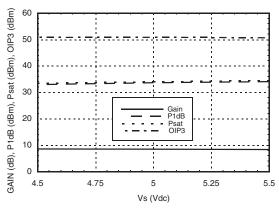
Psat vs. Temperature @ 2100 MHz

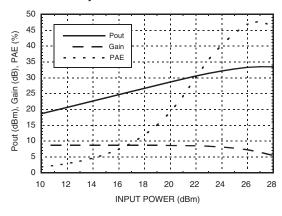


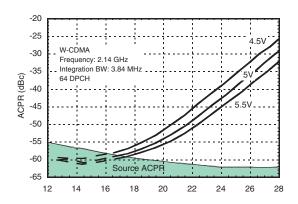


InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Output IP3 vs. Temperature @ 2100 MHz


Noise Figure vs. Temperature @ 2100 MHz

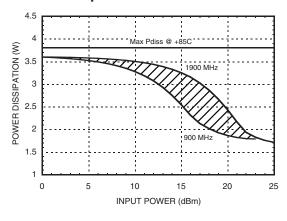

Reverse Isolation vs. Temperature @ 2100 MHz


Gain, Power & IP3 vs. Supply Voltage @ 2100 MHz

Power Compression @ 2100 MHz

ACPR vs. Supply Voltage @ 2140 MHz W-CDMA, 64 DPCH

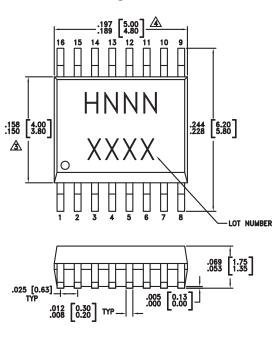
ANALOGDEVICES

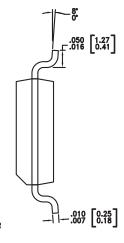

HMC453QS16G / 453QS16GE

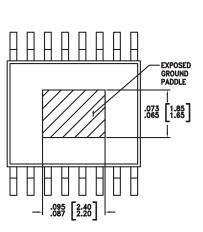
v01.0205

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Power Dissipation


Absolute Maximum Ratings


Collector Bias Voltage (Vcc)	+6.0 Vdc
Control Voltage (Vpd)	+5.4 Vdc
RF Input Power (RFIN)(Vs = Vpd = +5Vdc)	+32 dBm
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 58.5 mW/°C above 85 °C)	3.8 W
Thermal Resistance (junction to ground paddle)	17.1 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- ⚠ DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

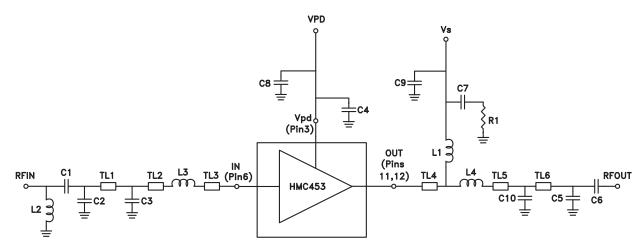
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC453QS16G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H453 XXXX
HMC453QS16GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H453</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC453QS16G / 453QS16GE

v01.0205


InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4, 5, 7-10, 13-16	GND	These pins & package bottom must be connected to RF/DC ground.	= GND
3	VPD	Power control pin. For maximum power, this pin should be connected to 5V. A higher voltage is not recommended. For lower idle current, this voltage can be reduced.	VPD 0 300
6	RFIN	This pin is DC coupled. Off chip matching components are required. See Application Circuit herein.	ORFOUT
11, 12	RFOUT	RF output and DC Bias input for the output amplifier stage. Off chip matching components are required. See Application Circuit herein.	=

400 MHz Application Circuit

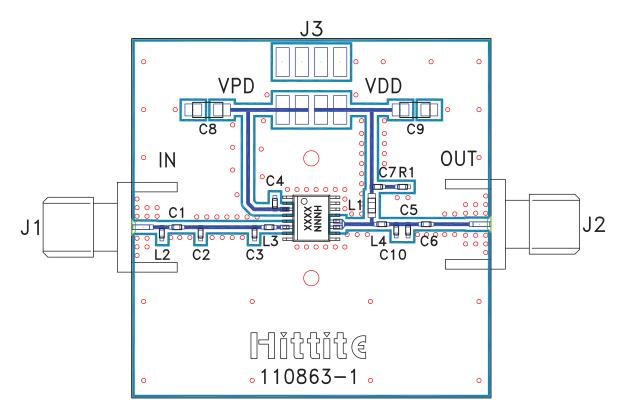
This circuit was used to specify the performance for 400-410 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2	TL3	TL4	TL5	TL6
Impedance 50 Ohm 50 Ohm 50 Ohm 50 Ohm 50 Ohm 50 Ohm						
Physical Length 0.22" 0.04" 0.04" 0.16" 0.04" 0.05"						
Electrical Length 5° 1° 1° 4° 1° 1°						
PCB Material: 10 mil Rogers 4350, Er = 3.48						

C1, C5 12 pF C2, C10 8.2 pF C3 6.8 pF C4, C7 100 pF C6 39 pF C8, C9 2.2 μF L1 47 nH L2 40 nH	Recommended C	component Values	
C3 6.8 pF C4, C7 100 pF C6 39 pF C8, C9 2.2 μF L1 47 nH	C1, C5	12 pF	
C4, C7 100 pF C6 39 pF C8, C9 2.2 μF L1 47 nH	C2, C10	8.2 pF	
C6 39 pF C8, C9 2.2 μF L1 47 nH	C3	6.8 pF	
C8, C9 2.2 μF L1 47 nH	C4, C7	100 pF	
L1 47 nH	C6	39 pF	
	C8, C9	2.2 µF	
L2 40 nH	L1	47 nH	
	L2	40 nH	
L3, L4 4.3 nH	L3, L4	4.3 nH	
R1 5.1 Ohm	R1	5.1 Ohm	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ANALOGDEVICES


HMC453QS16G / 453QS16GE

v01.0205

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

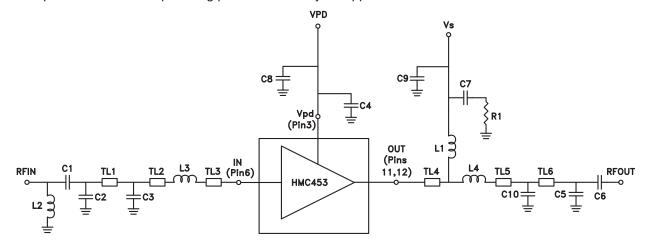
400 MHz Evaluation PCB

List of Materials for Evaluation PCB 110865-400 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1, C5	12 pF Capacitor, 0402 Pkg.
C2, C10	8.2 pF Capacitor, 0402 Pkg.
C3	6.8 pF Capacitor, 0402 Pkg.
C4, C7	100 pF Capacitor, 0402 Pkg.
C6	39 pF Capacitor, 0402 Pkg.
C8, C9	2.2 µF Capacitor, Tantalum
L1	47 nH Inductor, 0603 Pkg.
L2	40 nH Inductor, 0402 Pkg.
L3, L4	4.3 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC453QS16G / HMC453QS16GE Linear Amp
PCB [2]	110863 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

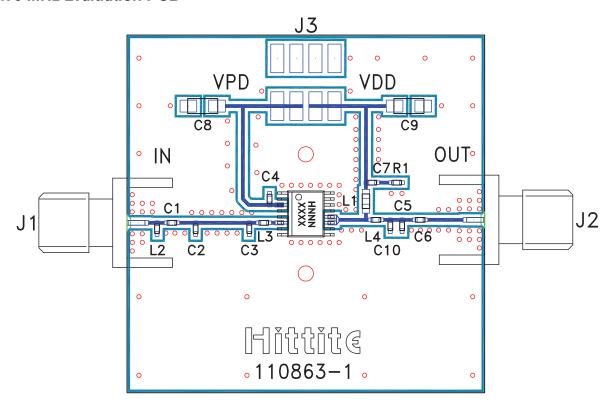

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of VIA holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.2 - 2.4 GHz

470 MHz Application Circuit

This circuit was used to specify the performance for 450-496 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2	TL3	TL4	TL5	TL6
Impedance 50 Ohm 50 Ohm 50 Ohm 50 Ohm 50 Ohm 50 Ohm						
Physical Length 0.22" 0.04" 0.04" 0.16" 0.04" 0.05"						
Electrical Length 6° 1° 1° 4° 1° 1°						
PCB Material: 10 mil Rogers 4350, Er = 3.48						


Recommended C	omponent Values
C1	12 pF
C2	8.2 pF
C3	6.8 pF
C4, C7	100 pF
C5	10 pF
C6	39 pF
C8, C9	2.2 μF
C10	5.6 pF
L1	47 nH
L2	40 nH
L3, L4	4.3 nH
R1	5.1 Ohm

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.2 - 2.4 GHz

470 MHz Evaluation PCB

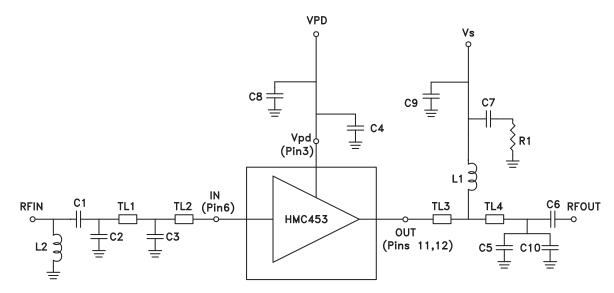
List of Materials for Evaluation PCB 110976-470 [1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3	2 mm DC Header	
C1	12 pF Capacitor, 0402 Pkg.	
C2	8.2 pF Capacitor, 0402 Pkg.	
C3	6.8 pF Capacitor, 0402 Pkg.	
C4, C7	100 pF Capacitor, 0402 Pkg.	
C5	10 pF Capacitor, 0402 Pkg.	
C6	39 pF Capacitor, 0402 Pkg.	
C8, C9	2.2 µF Capacitor, Tantalum	
C10	5.6 pF Capacitor, 0402 Pkg.	
L1	47 nH Inductor, 0603 Pkg.	
L2	40 nH Inductor, 0402 Pkg.	
L3, L4	4.3 nH Inductor, 0402 Pkg.	
R1	5.1 Ohm Resistor, 0402 Pkg.	
U1	HMC453QS16G / HMC453QS16GE Linear Amp	
PCB [2]	110863 Evaluation PCB, 10 mils	

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[1] Reference this number when ordering complete evaluation PCB $\,$

^[2] Circuit Board Material: Rogers 4350, Er = 3.48



InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.2 - 2.4 GHz

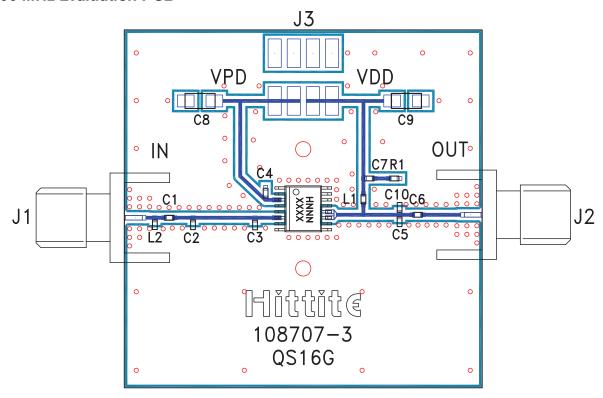
900 MHz Application Circuit

This circuit was used to specify the performance for 810-960 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2	TL3	TL4	
Impedance 50 Ohm 50 Ohm 50 Ohm 50 Ohr					
Physical Length 0.26" 0.08" 0.12" 0.15"					
Electrical Length 14° 4° 6° 8°					
PCB Material: 10 mil Rogers 4350, Er = 3.48					

omponent Values	
5 pF	
3.3 pF	
100 pF	
8.2 pF	
56 pF	
2.2 μF	
1 pF	
30 nH	
20 nH	
5.6 Ohm	

ANALOGDEVICES


HMC453QS16G / 453QS16GE

v01.0205

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.2 - 2.4 GHz

900 MHz Evaluation PCB

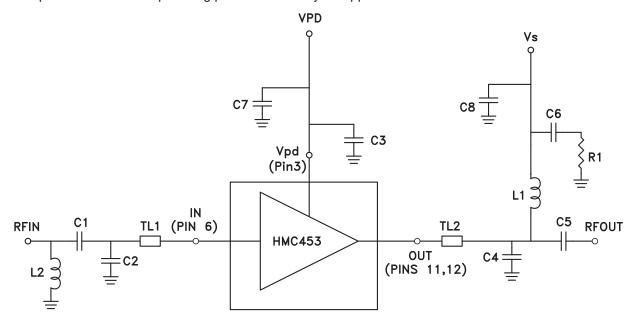
List of Materials for Evaluation PCB 108709-900 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	5.0 pF Capacitor, 0402 Pkg.
C2, C3	3.3 pF Capacitor, 0402 Pkg.
C4, C7	100 pF Capacitor, 0402 Pkg.
C5	8.2 pF Capacitor, 0402 Pkg.
C6	56 pF Capacitor, 0402 Pkg.
C8, C9	2.2 µF Capacitor, Tantalum
C10	1.0 pF Capacitor, 0402 Pkg.
L1	30 nH Inductor, 0402 Pkg.
L2	20 nH Inductor, 0402 Pkg.
R1	5.6 Ohm Resistor, 0402 Pkg.
U1	HMC453QS16G / HMC453QS16GE Linear Amp
PCB [2]	108707 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.



InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.2 - 2.4 GHz

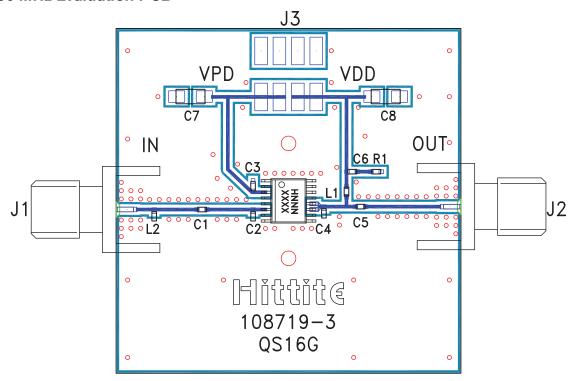
1900 MHz Application Circuit

This circuit was used to specify the performance for 1710-1990 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2
Impedance	50 Ohm	50 Ohm
Physical Length	0.04"	0.04"
Electrical Length	4°	4°
PCB Material: 10 mil Rogers 4350, Er = 3.48		

Recommended Component Values		
0.8 pF		
1.2 pF		
100 pF		
4.7 pF		
15 pF		
2.2 μF		
18 nH		
20 nH		
5.6 Ohms		

ANALOGDEVICES


HMC453QS16G / 453QS16GE

v01.0205

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.2 - 2.4 GHz

1900 MHz Evaluation PCB

List of Materials for Evaluation PCB 108721-1900 [1]

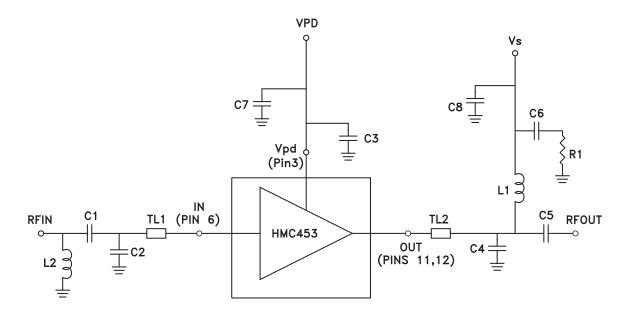
Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	0.8 pF Capacitor, 0402 Pkg.
C2	1.2 pF Capacitor, 0402 Pkg.
C3, C6	100 pF Capacitor, 0402 Pkg.
C4	4.7 pF Capacitor, 0402 Pkg.
C5	15 pF Capacitor, 0402 Pkg.
C7, C8	2.2 µF Capacitor, Tantalum
L1	18 nH Inductor, 0402 Pkg.
L2	20 nH Inductor, 0402 Pkg.
R1	5.6 Ohm Resistor, 0402 Pkg.
U1	HMC453QS16G / HMC453QS16GE Linear Amp
PCB [2]	108719 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

HMC453QS16G / 453QS16GE


v01.0205

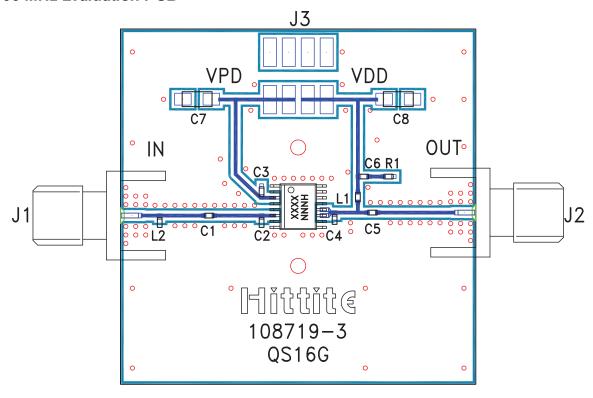
InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.2 - 2.4 GHz

2100 MHz Application Circuit

This circuit was used to specify the performance for 2100-2170 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2
Impedance	50 Ohm	50 Ohm
Physical Length	0.04"	0.04"
Electrical Length	5°	5°
PCB Material: 10 mil Rogers 4350. Er = 3.48		

Recommended Component Values	
C1	0.8 pF
C2	1 pF
C3, C6	100 pF
C4	3.9 pF
C5	15 pF
C7, C8	2.2 μF
L1	12 nH
L2	20 nH
R1	5.1 Ohm


HMC453QS16G / 453QS16GE

v01.0205

InGaP HBT 1.6 WATT POWER AMPLIFIER, 0.2 - 2.4 GHz

2100 MHz Evaluation PCB

List of Materials for Evaluation PCB 109994-2100 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	0.8 pF Capacitor, 0402 Pkg.
C2	1.0 pF Capacitor, 0402 Pkg.
C3, C6	100 pF Capacitor, 0402 Pkg.
C4	3.9 pF Capacitor, 0402 Pkg.
C5	15 pF Capacitor, 0402 Pkg.
C7, C8	2.2 µF Capacitor, Tantalum
L1	12 nH Inductor, 0402 Pkg.
L2	20 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC453QS16G / HMC453QS16GE Linear Amp
PCB [2]	108719 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 A81-2 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC576-SX HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5879LS7TR HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V A4011