

HMC491LP3 / 491LP3E

v03.1206

GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz

Typical Applications

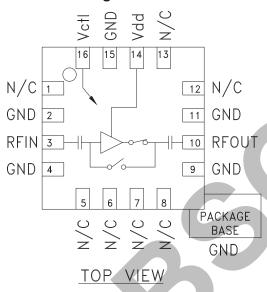
The HMC491LP3 / HMC491LP3E is ideal for:

- Wireless Local Loop (WLL)
- Fixed Wireless Access
- Microwave & VSAT Radios

Features

Gain: 16 dB

Noise Figure: 2 dB


Single Supply: +3V @ 9 mA

Integrated Bypass Mode

50 Ohm Matched Input/Output

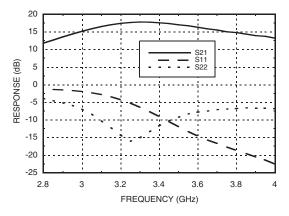
3 x 3 x 1 mm QFN SMT Package

Functional Diagram

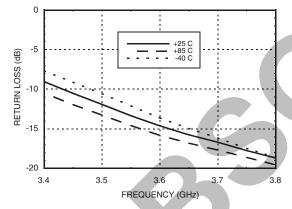
General Description

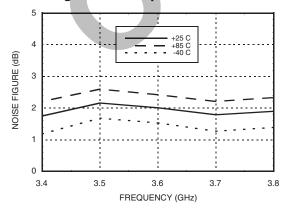
The HMC491LP3 & HMC491LP3E are versatile, integrated, Low Noise Amplifiers (LNA) featuring a bypass mode intended for 3.4 to 3.8 GHz Fixed Wireless & WLL applications. The amplifier provides 16 dB of gain, 2 dB noise figure and +3 dBm input IP3 while requiring only 9 mA from a +3V supply. Using a single control line, the LNA can be switched into a low loss 2.2 dB bypass mode reducing the current consumption to 20 μA . A low cost, leadless 3x3 mm QFN surface mount package (LP3) houses the amplifier. No external RF matching components are required.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +3V

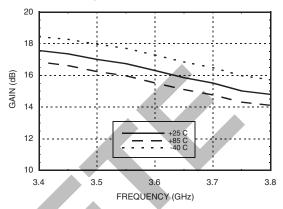

Parameter		LNA Mode		LNA Mode		Bypass Mode		11.7		
		Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		3.4 - 3.6		3.6 - 3.8		3.4 - 3.8		GHz		
Gain	14.5	17		13	15.5		-2.8	-2.3		dB
Gain Variation Over Temperature		0.012	0.02		0.012	0.02		0.004	0.008	dB/°C
Noise Figure		2.2	2.7		2.0	2.5				dB
Input Return Loss		12			17			18		dB
Output Return Loss		9			7			11		dB
Reverse Isolation		34			33					dB
Input or Output Power for 1dB Compression (P1dB)*	3	6		4	7		25	28		dBm
Input Third Order Intercept (IP3) (-20 dBm Input Power per tone, 1 MHz tone spacing)		1			3			11		dBm
Supply Current (Idd)		9			9			0.03		mA

^{*} P1dB for LNA Mode is referenced to RFOUT while P1dB for Bypass Mode is referenced to RFIN.

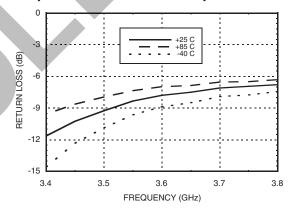



LNA Mode Broadband Gain & Return Loss

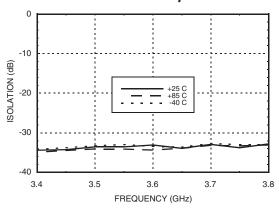
LNA Mode Input Return Loss vs. Temperature



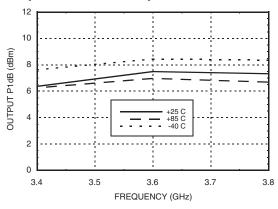
LNA Mode Noise Figure vs. Temperature



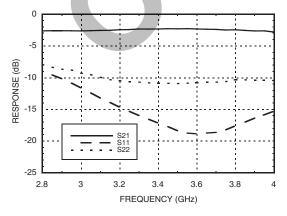
GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz


LNA Mode Gain vs. Temperature

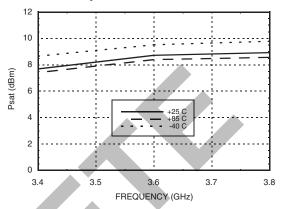
LNA Mode Output Return Loss vs. Temperature


LNA Mode Reverse Isolation vs. Temperature

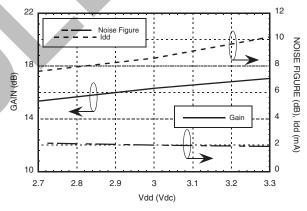



LNA Mode Output P1dB vs. Temperature

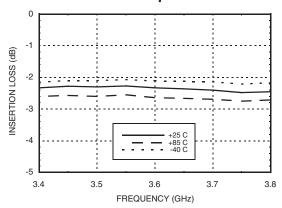
LNA Mode Input IP3 vs. Temperature



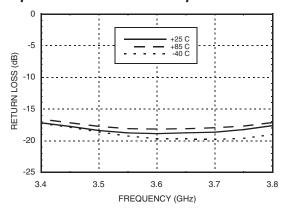
Bypass Mode Broadband Insertion Loss & Return Loss

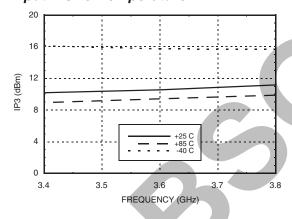


GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz


LNA Mode Psat vs. Temperature

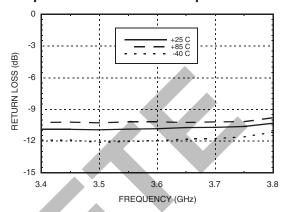
LNA Mode Gain, Noise Figure & Supply Current vs. Supply Voltage @ 3.6 GHz


Bypass Mode Insertion Loss vs. Temperature

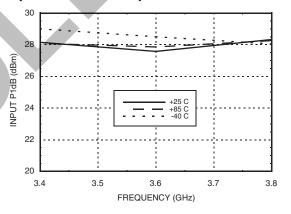


Bypass Mode Input Return Loss vs. Temperature

Bypass Mode Input IP3 vs. Temperature


Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+7.0 Vdc	
RF Input Power (RFIN) LNA Mode (Vdd = +3.0 Vdc) Bypass Mode	0 dBm +30 dBm	
Channel Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 1.8 mW/°C above 85 °C)	0.117 W	
Thermal Resistance (channel to ground paddle)	556 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	



GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz

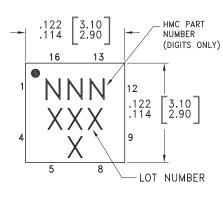
Bypass Mode Output Return Loss vs. Temperature

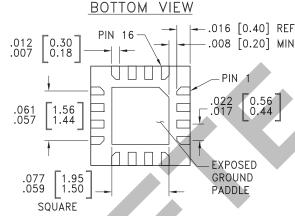
Bypass Mode Input P1dB vs. Temperature

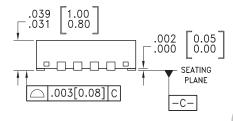
Typical Supply Current vs. Vdd

Vdd (Vdc)	ldd (mA)
+2.7	7.6
+3.0	9.0
+3.3	10.2

Truth Table


LNA Mode	Vctl= Vdd @ 1.6 mA				
Bypass Mode	Vctl= 0Vdc @ -13 μA				
Vdd= +3V ±10%					





GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz

Outline Drawing

NOTES:

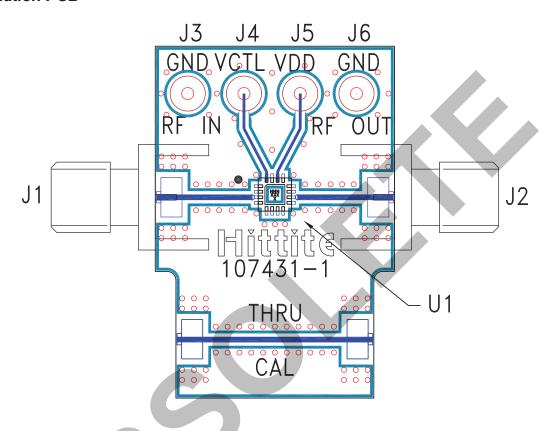
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC491LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	491 XXXX
HMC491LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	4 <u>91</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 5 - 8, 12, 13	N/C	No connection necessary. These pins may be connected to RF/DC ground.	
2, 4, 9, 11, 15	GND	These pins must be connected to RF/DC ground.	→ GND =
3	RF IN	This pin is AC coupled and matched to 50 Ohms.	RFIN ○──
10	RF OUT	This pin is AC coupled and matched to 50 Ohms.	—
14	Vdd	Power supply voltage.	Vdd O
16	Vctl	Control voltage. Vctl= Vdd for LNA mode. Vctl= 0V for bypass mode.	VctI O

GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 107174 [1]

Item	Description		
J1 - J2	PCB Mount SMA RF Connector		
J3 - J6	DC Pin		
U1	HMC491LP3 / HMC491LP3E Amplifier		
PCB [2]	107431 Evaluation PCB		

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 A81-2 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC576-SX HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5879LS7TR HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V A4011