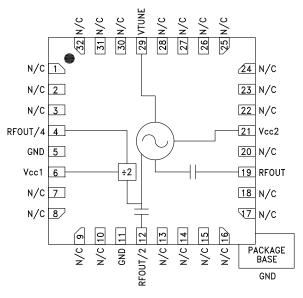


HMC514LP5 / 514LP5E

v03.0811


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 11.17 - 12.02 GHz

Typical Applications

Low noise MMIC VCO w/Half Frequency, Divide-by-4 Outputs for:

- VSAT Radio
- Point to Point/Multipoint Radio
- Test Equipment & Industrial Controls
- Military End-Use

Functional Diagram

Features

Dual Output: Fo = 11.17 - 12.02 GHz

Fo/2 = 5.58 - 6.01 GHz

Pout: +7 dBm

Phase Noise: -110 dBc/Hz @100 KHz Typ.

No External Resonator Needed

32 Lead 5x5mm SMT Package: 25mm²

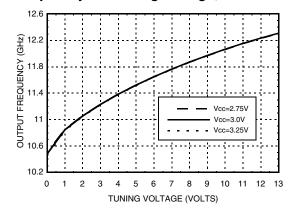
General Description

The HMC514LP5 & HMC514LP5E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC514LP5 & HMC514LP5E integrate resonators, negative resistance devices, varactor diodes and feature half frequency and divide-by-4 outputs. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +7 dBm typical from a +3V supply voltage. The prescaler function can be disabled to conserve current if not required. The voltage controlled oscillator is packaged in a leadless QFN 5x5 mm surface mount package, and requires no external matching components.

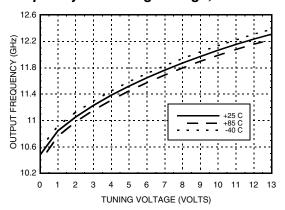
Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1, Vcc2 = +3V

Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2		11.17 - 12.02 5.585 - 6.01		GHz GHz
Power Output	RFOUT/ RFOUT/4	+5 +5 -10		+10 +11 -4	dBm dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-110		dBc/Hz
Tune Voltage	Vtune	2		13	V
Supply Current	lcc1 & lcc2	240	275	290	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			2		dB
Harmonics/Subharmonics	1/2 3/2 2nd 3rd		30 24 17 28		dBc dBc dBc dBc
Pulling (into a 2.0:1 VSWR)			4		MHz pp
Pushing @ Vtune= 5V			18		MHz/V
Frequency Drift Rate			1.2		MHz/°C

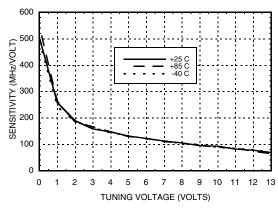
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

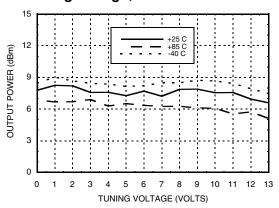


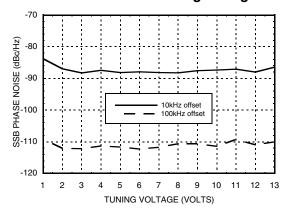
v03.0811

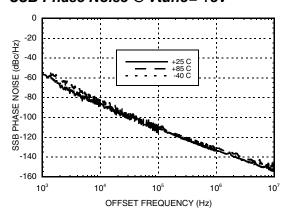


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 11.17 - 12.02 GHz


Frequency vs. Tuning Voltage, T= 25°C

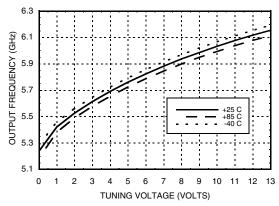

Frequency vs. Tuning Voltage, Vcc= +3V


Sensitivity vs. Tuning Voltage, Vcc= +3V

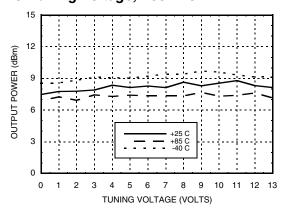

Output Power vs. Tuning Voltage, Vcc= +3V

SSB Phase Noise vs. Tuning Voltage

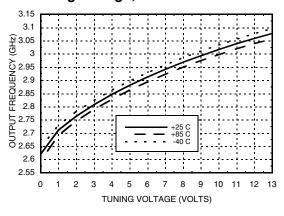
SSB Phase Noise @ Vtune= +5V

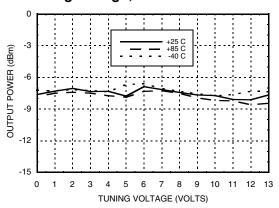


v03.0811



MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 11.17 - 12.02 GHz


RFOUT/2 Frequency vs. Tuning Voltage, Vcc= +3V


RFOUT/2 Output Power vs. Tuning Voltage, Vcc= +3V

Divide-by-4 Frequency vs. Tuning Voltage, Vcc= +3V

Divide-by-4 Output Power vs. Tuning Voltage, Vcc= +3V

Absolute Maximum Ratings

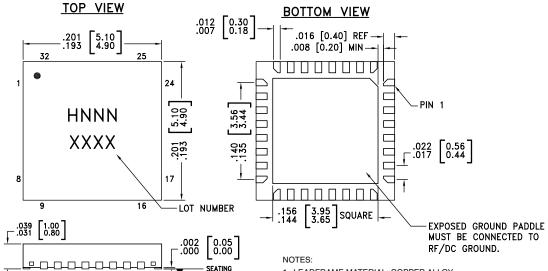
Vcc1, Vcc2	+3.5 Vdc
Vtune	0 to +15V
Junction Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 27 mW/C above 85 °C	1.3 W
Thermal Resistance (junction to ground paddle)	37.5 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
2.75	230
3.0	275
3.25	320

 ${\it Note: VCO\ will\ operate\ over\ full\ voltage\ range\ shown\ above.}$

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS



v03.0811

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 11.17 - 12.02 GHz

Outline Drawing

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

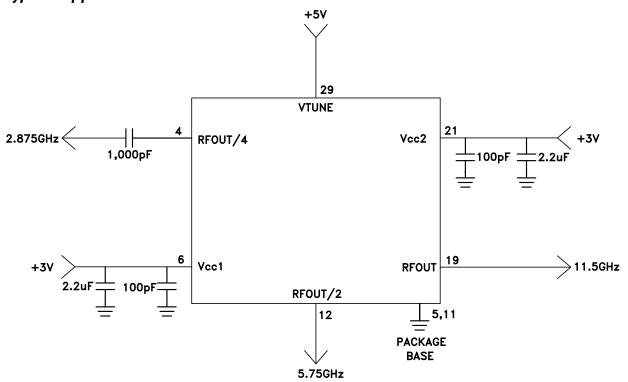
△ .003[0.08] C

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC514LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL3 ^[1]	H514 XXXX
HMC514LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 ^[2]	H514 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1 - 3, 7 - 10, 13 - 18, 20, 22 - 28, 30 - 32	N/C	No Connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
4	RFOUT/4	Divide-by-4 Output.	ORFOUT/4
6	VCC1	Supply Voltage for prescaler. If prescaler is not required, this pin may be left open to conserve 40 mA of current.	Vcc10 14pF

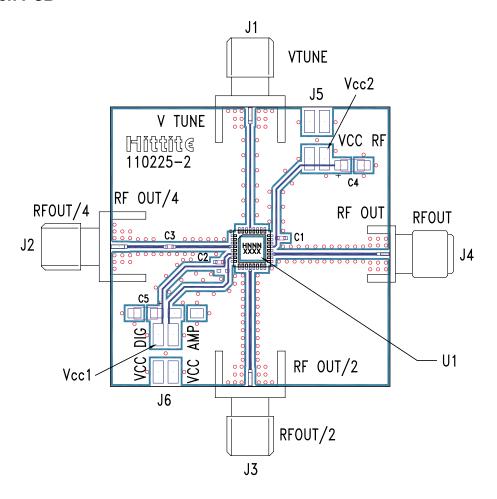

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 11.17 - 12.02 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
12	RFOUT/2	Half frequency output (AC coupled).	⊢ORFOUT/2
19	RF OUT	RF output (AC coupled).	RFOUT
21	VCC2	Supply Voltage, +3V	Vcc2 0 14pF
29	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	3nH VTUNEO
5, 11, Paddle	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	→ GND —

v03.0811

Typical Application Circuit


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 11.17 - 12.02 GHz

Evaluation PCB

v03.0811

List of Materials for Evaluation PCB 110227 [1]

Item	Description
J1 - J4	PCB Mount SMA RF Connector
J5 - J6	2 mm DC Header
C1 - C2	100 pF Capacitor, 0402 Pkg.
C3	1,000 pF Capacitor, 0402 Pkg.
C4 - C5	2.2 µF Tantalum Capacitor
U1	HMC514LP5 / HMC514LP5E VCO
PCB [2]	110225 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for VCO Oscillators category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAOC-009260-SMB003 MAOC-009261-PKG003 MAOC-009872-000000 MAOC-009264-PKG003 HMC384LP4ETR CVCO33CL-01100150 CVCO33CL-0415-0435 CVCO33CL-0750-0770 HMC1166LP5ETR HMC391LP4TR HMC1168LP5ETR MAOC-009260-PKG003

MAOC-009266-PKG003 HMC511LP5ETR HMC534LP5ETR HMC431LP4ETR HMC3587LP3BETR CVC055CC-1680-1680 CVCO33CL0125-0200 CVCO45CL-0100-0140 CVCO45CL-0421-0441 CRBV55BE-1930-1990 MAX2609EUT+T HMC1160LP5E HMC1164LP5E

HMC1166LP5E HMC1167LP5E HMC1168LP5E HMC587LC4BTR HMC732LC4B HMC358MS8GE HMC384LP4E HMC385LP4E

HMC388LP4E HMC390LP4E HMC391LP4 HMC391LP4E HMC398QS16GE HMC401QS16GE HMC416LP4E HMC429LP4E

HMC430LP4E HMC466LP4E HMC506LP4 HMC507LP5E HMC508LP5E HMC509LP5 HMC510LP5E HMC511LP5E HMC512LP5E