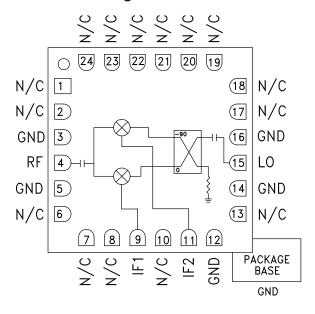


GaAs MMIC I/Q MIXER 8.5 - 13.5 GHz

Typical Applications

The HMC521LC4 is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- Military Radar


Features

Wide IF Bandwidth: DC - 3.5 GHz

Image Rejection: 38 dB LO to RF Isolation: 50 dB High Input IP3: +23 dBm

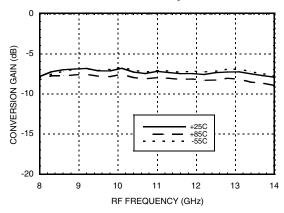
24 Lead 4x4mm SMT Package: 16mm²

Functional Diagram

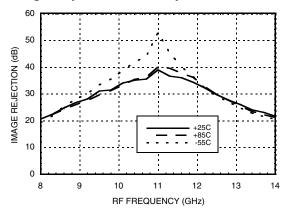
General Description

The HMC521LC4 is a compact I/Q MMIC mixer in a leadless "Pb free" RoHS compliant SMT package, which can be used as either an Image Reject Mixer or a Single Sideband Upconverter. The mixer utilizes two standard Hittite double balanced mixer cells and a 90 degree hybrid fabricated in a GaAs MESFET process. A low frequency quadrature hybrid was used to produce a 100 MHz USB IF output. This product is a much smaller alternative to hybrid style Image Reject Mixers and Single Sideband Upconverter assemblies. The HMC521LC4 eliminates the need for wire bonding allowing use of surface mount manufacturing techniques.

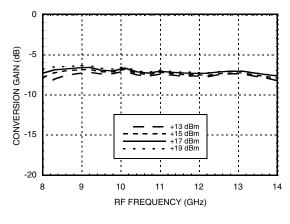
Electrical Specifications, $T_{A} = +25$ °C, IF= 100 MHz, LO = +15 dBm*

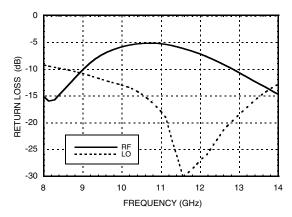

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF/LO		8.5 - 13.5		10.5 - 11.7			GHz
Frequency Range, IF		DC - 3.5		DC - 3.5		GHz	
Conversion Loss (As IRM)		8	10		7.5	9.5	dB
Image Rejection	20	30		30	38		dB
1 dB Compression (Input)		+14			+15		dBm
LO to RF Isolation	35	45		45	55		dB
LO to IF Isolation	18	22		20	24		dB
IP3 (Input)		+23			+24		dBm
Amplitude Balance		0.3			0.1		dB
Phase Balance		4			4		Deg

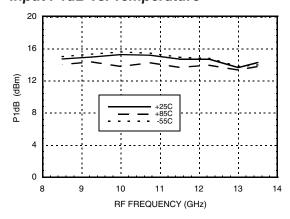
^{*} Unless otherwise noted, all measurements performed as downconverter.

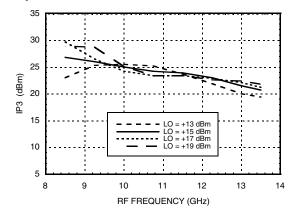


Data Taken As IRM With External IF Hybrid


Conversion Gain vs. Temperature

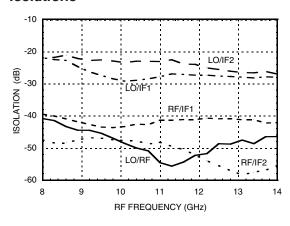

Image Rejection vs. Temperature

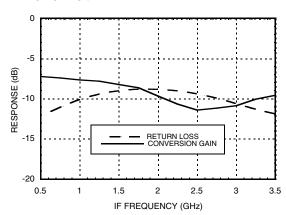

Conversion Gain vs. LO Drive


Return Loss

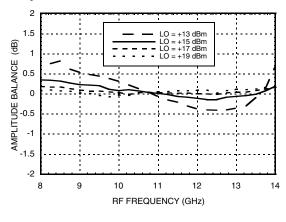
Input P1dB vs. Temperature

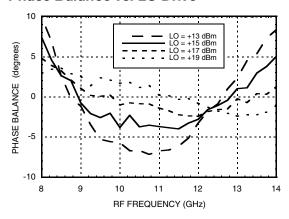
Input IP3 vs. LO Drive

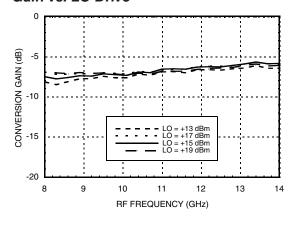


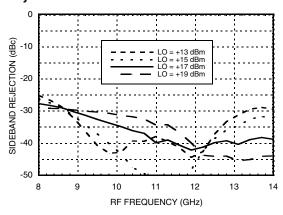


Quadrature Channel Data Taken Without IF Hybrid


Isolations


IF Bandwidth*


Amplitude Balance vs. LO Drive


Phase Balance vs. LO Drive

Upconverter Performance Conversion Gain vs. LO Drive

Upconverter Performance Sideband Rejection vs. LO Drive

^{*} Conversion gain data taken with external IF hybrid

GaAs MMIC I/Q MIXER 8.5 - 13.5 GHz

Harmonics of LO

LO Fron (CLIE)	nLO Spur at RF Port				
LO Freq. (GHz)	1	2	3	4	
8.5	42	44	44	70	
9.5	50	53	59	77	
10.5	51	54	63	xx	
11.5	47	58	66	xx	
12.5	45	59	70	xx	
13.5	45	57	XX	xx	

LO = + 15 dBm

Values in dBc below input LO level measured at RF Port.

Absolute Maximum Ratings

RF / IF Input	+20 dBm
LO Drive	+ 27 dBm
Channel Temperature	150°C
Continuous Pdiss (T=85°C) (derate 6.9 mW/°C above 85°C)	460 mW
Thermal Resistance (R _{TH}) (junction to package bottom)	141.4 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C

MxN Spurious Outputs

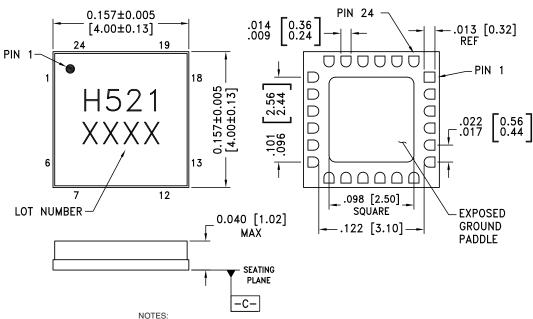
	nLO				
mRF	0	1	2	3	4
0	xx	-5	29	23	52
1	27	0	51	59	81
2	92	85	76	82	92
3	92	92	92	92	92
4	92	92	92	92	92

RF = 10.6 GHz @ -10 dBm LO = 10.5 GHz @ +15 dBm

Data taken without IF hybrid

All values in dBc below IF power level

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS



GaAs MMIC I/Q MIXER 8.5 - 13.5 GHz

Outline Drawing

BOTTOM VIEW

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30 80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKLE
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

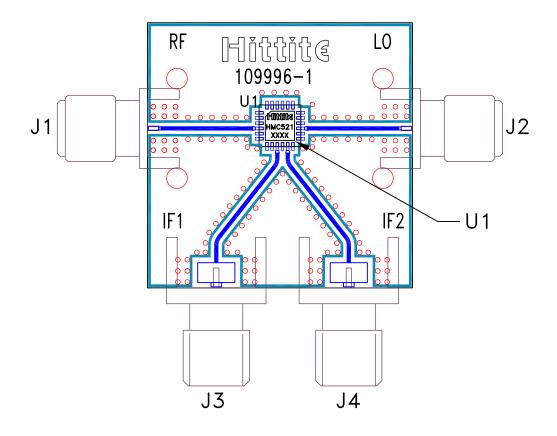
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC521LC4	Alumina, White	Gold over Nickel	MSL3 [1]	H521 XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

GaAs MMIC I/Q MIXER 8.5 - 13.5 GHz


Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 6 - 8, 10, 13, 17 - 24	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
3, 5, 12, 14, 16	GND	These pins and package bottom must be connected to RF/DC ground.	⊖ GND =
4	RF	This pin is AC coupled and matched to 50 Ohms from 8.5 to 13.5 GHz.	RF ○
9	IF1	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose	IF1,IF2 O
11	IF2	value has been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source/sink more than 3mA of current or part non-function and possible part failure will result.	
15	LO	This pin is AC coupled and matched to 50 Ohms from 8.5 to 13.5 GHz.	LO ○──

Evaluation PCB

List of Materials for Evaluation PCB 109998 [1]

Item	Description	
J1, J2	PCB Mount SMA RF Connector, SRI	
J3 - J4	PCB Mount SMA Connector, Johnson	
U1	HMC521LC4	
PCB [2]	109996 Evaluation Board	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Mixer category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

 M80C
 HMC337-SX
 F1763EVBI
 mamx-009646-23dbml
 HMC339-SX
 F1751NBGI
 CSM5T
 CHR3664-QEG
 NJM2552V-TE1

 HMC220BMS8GE
 HMC8192-SX
 LTC5569IUF#PBF
 HMC220BMS8GETR
 MAX2055EUP+TD
 M85C
 M74C
 CSM4TH
 HMC8191-SX

 CMD251C3
 MD-174-PIN
 CMD253C3
 HMC8192LG
 HMC553AG-SX
 HMC521A-SX
 HMC521ACHIPS
 HMC558A
 HMC553AG

 HMC8191
 MAMX-011023-SMB
 EMRS-1TR
 ADL5355ACPZ-R7
 HMC399MS8TR
 HMC141LH5
 HMC333TR
 HMC214MS8TR

 HMC175MS8TR
 HMC1043LC3TR
 F0552NLGI
 F1701NBGI
 F0502NLGI
 F1763NBGI
 MDS-189-PIN
 MAX2042AETP+
 MAX2032ETP+

 MAX2043ETX+
 CSM2-13
 CSM4T
 HMC1056LP4BETR
 LTC5510IUF#PBF
 LTC5553IUDB#TRMPBF