Typical Applications

Low noise MMIC VCO w/Half Frequency, Divide-by-4 Outputs for:

- VSAT Radio
- Point to Point/Multipoint Radio
- Test Equipment \& Industrial Controls
- Military End-Use

Functional Diagram

Features

Dual Output: Fo = 13.6-14.9 GHz
$\mathrm{Fo} / 2=6.8-7.45 \mathrm{GHz}$
Pout: +7 dBm
Phase Noise: - $110 \mathrm{dBc} / \mathrm{Hz}$ @100 kHz Typ.
No External Resonator Needed
32 Lead $5 \times 5 \mathrm{~mm}$ SMT Package: $25 \mathrm{~mm}^{2}$

General Description

The HMC531LP5 \& HMC531LP5E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC531LP5 \& HMC531LP5E integrate resonators, negative resistance devices, varactor diodes and feature half frequency and divide-by-4 outputs. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +7 dBm typical from $\mathrm{a}+5 \mathrm{~V}$ supply voltage. The prescaler function can be disabled to conserve current if not required. The voltage controlled oscillator is packaged in a leadless QFN $5 \times 5 \mathrm{~mm}$ surface mount package, and requires no external matching components.

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}$, Vcc1, Vcc2 $=+5 \mathrm{~V}$

Parameter		Min.	Typ.	Max.	Units
Frequency Range	$\begin{array}{r} \text { Fo } \\ \text { Fo/2 } \end{array}$	$\begin{gathered} 13.6-14.9 \\ 6.8-7.45 \end{gathered}$			$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$
Power Output	RFOUT RFOUT/2 RFOUT/4	$\begin{aligned} & +3 \\ & +8 \\ & -9 \end{aligned}$		$\begin{gathered} +10 \\ +14 \\ -3 \end{gathered}$	dBm dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-110		$\mathrm{dBc} / \mathrm{Hz}$
Tune Voltage	Vtune	2		13	V
Supply Current	Icc1 \& Icc2	220	260	300	mA
Tune Port Leakage Current (Vtune= 13V)				10	$\mu \mathrm{A}$
Output Return Loss			8		dB
Harmonics/Subharmonics	$\begin{array}{r} 1 / 2 \\ 3 / 2 \\ 2 n d \\ 3 \text { rd } \end{array}$		$\begin{aligned} & 25 \\ & 35 \\ & 18 \\ & 40 \end{aligned}$		dBc dBc dBc dBc
Pulling (into a 2.0:1 VSWR)			5		MHz pp
Pushing @ Vtune=5V			6		MHz/V
Frequency Drift Rate			1.2		$\mathrm{MHz} /{ }^{\circ} \mathrm{C}$

MMIC VCO w/ HALF FREQUENCY OUTPUT \& DIVIDE-BY-4, 13.6-14.9 GHz

Frequency vs. Tuning Voltage, Vcc $=+5 \mathrm{~V}$

Sensitivity vs. Tuning Voltage, Vcc= +5V

SSB Phase Noise vs. Tuning Voltage

Frequency vs. Tuning Voltage, $\boldsymbol{T}=25^{\circ} \mathrm{C}$

Output Power

vs. Tuning Voltage, Vcc= +5V

SSB Phase Noise @ Vtune= +5V

RFOUT/2 Frequency

vs. Tuning Voltage, Vcc= +5V

Divide-by-4 Frequency
vs. Tuning Voltage, Vcc= +5V

Absolute Maximum Ratings

Vcc1, Vcc2	+5.5 Vdc
Vtune	0 to +15 V
Junction Temperature	$135^{\circ} \mathrm{C}$
Continuous Pdiss $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right.$) (derate $37 \mathrm{~mW} / \mathrm{C}$ above $85^{\circ} \mathrm{C}$	1.85 W
Thermal Resistance (junction to ground paddle)	$27^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1 A

RFOUT/2 Output Power

vs. Tuning Voltage, Vcc= +5V

Divide-by-4 Output Power
vs. Tuning Voltage, Vcc= +5V

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	235
5.00	260
5.25	275

Note: VCO will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MMIC VCO w/ HALF FREQUENCY OUTPUT \& DIVIDE-BY-4, 13.6-14.9 GHz

Outline Drawing

Package Information

[1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[3] 4-Digit lot number XXXX
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
$1-3,7-10,13-18$, $20,22-28,30-32$	$\mathrm{~N} / \mathrm{C}$	No Connection. These pins may be connected to RF/ DC ground. Performance will not be affected.	
4	RFOUT/4	Divide-by-4 Output.	
6	Vcc1	Supply Voltage for prescaler. If prescaler is not required, this pin may be left open to conserve 65 mA of current.	

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
12	RFOUT/2	Half frequency output (AC coupled).	
19	RF OUT	RF output (AC coupled).	
21	Vcc2	Supply Voltage, +5 V	
29	VTUNE	Control Voltage and Modulation Input. Modulation bandwidth dependent on drive source impedance. See "Determining the FM Bandwidth of a Wideband Varactor Tuned VCO" application note.	
5, 11 Paddle	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	$\frac{\text { OGND }}{=}$

Typical Application Circuit

MMIC VCO w/ HALF FREQUENCY OUTPUT \& DIVIDE-BY-4, 13.6-14.9 GHz

Evaluation PCB

List of Materials for Evaluation PCB $110227{ }^{[1]}$

Item	Description
J1 - J4	PCB Mount SMA RF Connector
J5- J6	2 mm DC Header
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4	$1,000 \mathrm{pF}$ Capacitor, 0402 Pkg.
C5-C7	2.2μ F Tantalum Capacitor
U1	HMC531LP5(E) VCO
PCB [2]	110225 Eval Board

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for VCO Oscillators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAOC-009260-SMB003 MAOC-009261-PKG003 MAOC-009872-000000 MAOC-009264-PKG003 HMC384LP4ETR CVCO33CL-01100150 CVCO33CL-0415-0435 CVCO33CL-0750-0770 HMC1166LP5ETR HMC391LP4TR HMC1168LP5ETR MAOC-009260-PKG003 MAOC-009266-PKG003 HMC511LP5ETR HMC534LP5ETR HMC431LP4ETR HMC3587LP3BETR CVC055CC-1680-1680 CVCO33CL-0125-0200 CVCO45CL-0100-0140 CVCO45CL-0421-0441 CRBV55BE-1930-1990 MAX2609EUT+T HMC1160LP5E HMC1164LP5E HMC1166LP5E HMC1167LP5E HMC1168LP5E HMC587LC4BTR HMC732LC4B HMC358MS8GE HMC384LP4E HMC385LP4E HMC388LP4E HMC390LP4E HMC391LP4 HMC391LP4E HMC398QS16GE HMC401QS16GE HMC416LP4E HMC429LP4E HMC430LP4E HMC466LP4E HMC506LP4 HMC507LP5E HMC508LP5E HMC509LP5 HMC510LP5E HMC511LP5E HMC512LP5E

