

HMC533LP4 / 533LP4E

v00.0405

MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

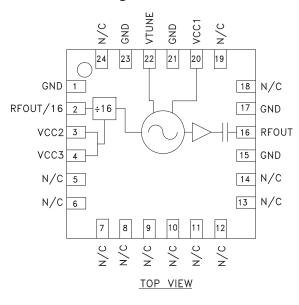
Typical Applications

Low noise MMIC VCO w/Divide-by-16 for:

- VSAT Radio
- Point to Point/Multipoint Radio
- Test Equipment & Industrial Controls
- Military End-Use
- Automotive Radar

Features

Pout: +12 dBm


Phase Noise: -95 dBc/Hz @100 KHz Typ.

No External Resonator Needed

Single Supply: +5V @ 220 mA

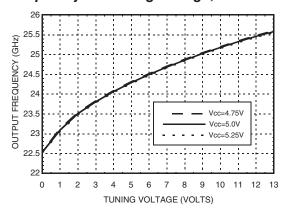
24 Lead 4x4mm QFN Package: 9 mm²

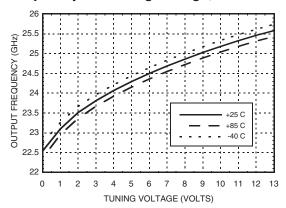
Functional Diagram

General Description

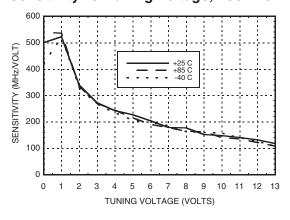
The HMC533LP4 & HMC533LP4E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC533LP4 & HMC533LP4E integrate resonators, negative resistance devices, varactor diodes and feature a divide-by-16 output. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +12 dBm typical from a +5V supply voltage. Prescaler function can be disabled to conserve current if not required. The voltage controlled oscillator is packaged in a leadless QFN 4 x 4 mm surface mount package.

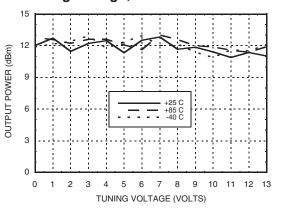
Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1, Vcc2, Vcc3 = +5V


Parameter		Min.	Тур.	Max.	Units
Frequency Range			23.8 - 24.8		GHz
Power Output	RFOUT/16	+9 -7	+12 -4	+15 -1	dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-95		dBc/Hz
Tune Voltage	Vtune	2		13	V
Supply Current	Icc	180	220	260	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			3		dB
Harmonics/Subharmonics	1/2 3/2		26 37		dBc dBc
Pulling (into a 2.0:1 VSWR)			13		MHz pp
Pushing @ Vtune= 5V		·	80		MHz/V
Frequency Drift Rate			2.3		MHz/°C

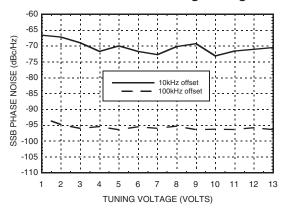


MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

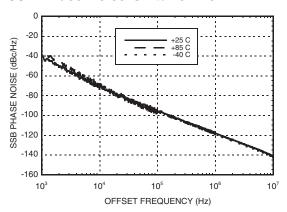

Frequency vs. Tuning Voltage, T= 25°C


Frequency vs. Tuning Voltage, Vcc= +5V

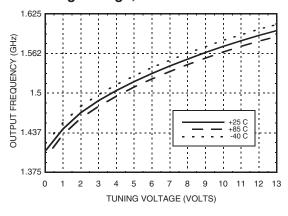
Sensitivity vs. Tuning Voltage, Vcc= +5V

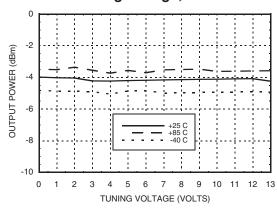


Output Power vs. Tuning Voltage, Vcc= +5V



MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz


SSB Phase Noise vs. Tuning Voltage


SSB Phase Noise @ Vtune= +5V

Divide-by-16 Frequency vs. Tuning Voltage, Vcc= +5V

Divide-by-16 Output Power vs. Tuning Voltage, Vcc= +5V

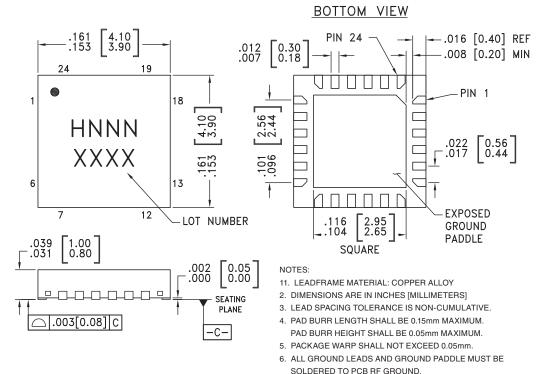
Absolute Maximum Ratings

Vcc1, Vcc2	5.5 V
Vtune	0 to 15V Max.
Junction Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 28 mW/C above 85 °C	1.4 W
Thermal Resistance	36 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	200
5.0	220
5.25	240

Note: VCO will operate over full voltage range shown above.


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

Outline Drawing

Package Information

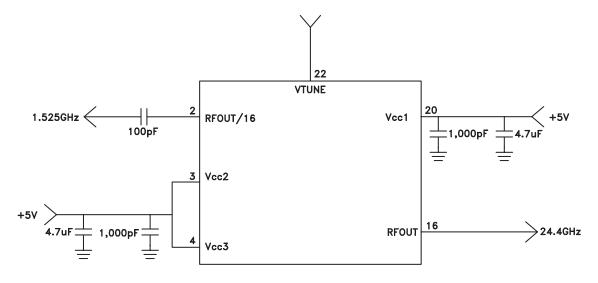
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC533LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H533 XXXX
HMC533LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H533 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 15, 17, 21, 23	GND	Package bottom has an exposed metal paddle that must also be connected to RF/DC ground.	= O GND
2	RFOUT/16	Divided-by-16 Output	ORFOUT/16

7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

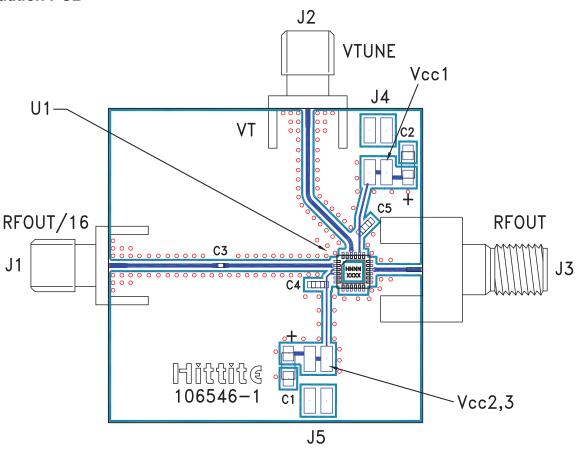


MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
3, 4	VCC2, VCC3	Supply voltage for prescaler. If prescaler is not required, these pins may be left open to conserve 100 mA of current	Vcc2,30
5-14, 18, 19, 24	N/C	No Connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
16	RFOUT	RF output (AC coupled).	RFOUT
20	VCC1	Supply Voltage, +5V	Vcc10 16pF
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	VTUNE 0 1250 5.5pF 3.6pF

Typical Application Circuit



MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 106651 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3	2.92 mm PCB mount k-connector
J4 - J5	2 mm DC Header
C1 - C2	4.7 μF Tantalum Capacitor
C3	100 pF Capacitor, 0402 Pkg.
C4 -C5	1,000 pF Capacitor, 0603 Pkg.
U1	HMC533LP4 / HMC533LP4E VCO
PCB [2]	106546 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for VCO Oscillators category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAOC-009260-SMB003 MAOC-009261-PKG003 MAOC-009872-000000 MAOC-009264-PKG003 HMC384LP4ETR CVCO33CL-01100150 CVCO33CL-0415-0435 CVCO33CL-0750-0770 HMC1166LP5ETR HMC391LP4TR HMC1168LP5ETR MAOC-009260-PKG003

MAOC-009266-PKG003 HMC511LP5ETR HMC534LP5ETR HMC431LP4ETR HMC3587LP3BETR CVC055CC-1680-1680 CVCO33CL0125-0200 CVCO45CL-0100-0140 CVCO45CL-0421-0441 CRBV55BE-1930-1990 MAX2609EUT+T HMC1160LP5E HMC1164LP5E

HMC1166LP5E HMC1167LP5E HMC1168LP5E HMC587LC4BTR HMC732LC4B HMC358MS8GE HMC384LP4E HMC385LP4E

HMC388LP4E HMC390LP4E HMC391LP4 HMC391LP4E HMC398QS16GE HMC401QS16GE HMC416LP4E HMC429LP4E

HMC430LP4E HMC466LP4E HMC506LP4 HMC507LP5E HMC508LP5E HMC509LP5 HMC510LP5E HMC511LP5E HMC512LP5E