6 GHz to 14 GHz, GaAs, MMIC, Double-Balanced Mixer

Data Sheet

FEATURES

Passive: no dc bias required

 Conversion loss: $\mathbf{1 0 ~ d B}$ maximum Input IP3 up to 21 dBm typical LO to RF isolation: $\mathbf{3 7} \mathbf{d B}$ typicalWide IF bandwidth: dc to $5 \mathbf{~ G H z}$
7-pad, $0.950 \mathrm{~mm} \times 0.750 \mathrm{~mm}$, RoHS compliant, bare die

APPLICATIONS

Microwave and very small aperture terminal (VSAT) radios Test equipment
Point to point radios
Military electronic warfare (EW), electronic countermeasure (ECM), and command, control, communications and intelligence (C3I)

GENERAL DESCRIPTION

The HMC553ACHIPS is a general-purpose, double balanced, monolithic microwave integrated circuit (MMIC) mixer that can be used as an upconverter or a downconverter between 6 GHz and 14 GHz . This mixer is fabricated in a gallium arsenide (GaAs), metal semiconductor field effect transistor (MESFET) process and requires no external components or matching circuitry.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The HMC553ACHIPS provides high local oscillator (LO) to RF and LO to intermediate frequency (IF) suppression due to optimized balun structures for as low as 32 dB and 28 dB , respectively. The mixer operates with LO drive levels from 9 dBm to 15 dBm .

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Interface Schematics 5
Typical Performance Characteristics6
Downconverter Performance 6
Upconverter Performance 14
Isolation and Return Loss 18
IF Bandwidth 20
Spurious and Harmonics Performance 22
Theory of Operation 23
Applications Information 24
Typical Application Circuit 24
Mounting and Bonding Techniques 25
Handling Precautions 25
Mounting 25
Wire Bonding 25
Assembly Diagram 26
Outline Dimensions 27
Ordering Guide 27

REVISION HISTORY

12/2019—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}=100 \mathrm{MHz}, \mathrm{RF}=-10 \mathrm{dBm}$, and $\mathrm{LO}=+13 \mathrm{dBm}$, upper sideband. All measurements performed as a downconverter, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
			$\begin{aligned} & 6 \\ & 6 \\ & \text { DC } \end{aligned}$		$\begin{aligned} & 14 \\ & 14 \\ & 5 \end{aligned}$	GHz GHz GHz
LO DRIVE LEVELS			9	13	15	dBm
6 GHz to 11 GHz PERFORMANCE Downconverter Conversion Loss Noise Figure Input Third-Order Intercept Input 1 dB Compression Point Input Second-Order Intercept Upconverter Conversion Loss Input Third-Order Intercept Input 1 dB Compression Point Isolation RF to IF LO to RF LO to IF Return Loss RF LO	IP3 P1dB IP2 IP3 P1dB	Taken with external LO amplifier 1 MHz separation between inputs 1 MHz separation between inputs 1 MHz separation between inputs LO frequency $=10 \mathrm{GHz}$ LO power $=11 \mathrm{dBm}$	15 19 32 30	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 17.5 \\ & 9.5 \\ & 40 \\ & \\ & 6 \\ & 17 \\ & 8 \\ & \\ & 30 \\ & 37 \\ & 33 \\ & 12 \\ & 10 \\ & \hline \end{aligned}$	9	dB dB dBm dBm dBm dB dBm dBm dB dB dB dB dB
11 GHz to 14 GHz PERFORMANCE Downconverter Conversion Loss Noise Figure Input Third-Order Intercept Input 1 dB Compression Point Input Second-Order Intercept Upconverter Conversion Loss Input Third-Order Intercept Input 1 dB Compression Point Isolation RF to IF LO to RF LO to IF Return Loss RF LO	IP3 P1dB IP2 IP3 P1dB	Taken with external LO amplifier 1 MHz separation between inputs 1 MHz separation between inputs 1 MHz separation between inputs LO frequency $=10 \mathrm{GHz}$ LO power $=11 \mathrm{dBm}$	20 20 32 28		10	dB dB dBm dBm dBm dB dBm dBm dB dB dB dB dB

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Input Power	
RF	25 dBm
LO	25 dBm
IF	25 dBm
IF Source and Sink Current	3 mA
Continuous Power Dissipation, PoIss	414 mW
$\quad\left(\mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right.$, Derate $4.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $85^{\circ} \mathrm{C}$)	
Temperature	$260^{\circ} \mathrm{C}$
\quad Reflow	$175^{\circ} \mathrm{C}$
Junction	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\quad Storage Range	
Electrostatic Discharge (ESD) Sensitivity	1000 V
Human Body Model (HBM)	1250 V
Field Induced Charged Device Model	
\quad (FICDM)	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pad Function Descriptions

Pad No.	Mnemonic	Description
$1,4,5,7$	GND	Ground. These GND pads must be connected to RF and dc ground.
2	LO	LO Port. The LO pad is ac-coupled and matched to 50Ω.
3	RF	RF Port. The RF pad is ac-coupled and matched to 50Ω. 6
IF Port. The IF pad is dc-coupled. For applications not requiring operation to dc, dc block the IF pad externally		
IF	using a series capacitor of a value chosen to pass the necessary IF frequency range. For operation to dc, the IF pad must not source or sink more than 3 mA of current because die malfunction and possible die failure may result. Ground. The die bottom must be attached directly to the ground plane eutectically or with conductive epoxy.	

INTERFACE SCHEMATICS

Figure 3. GND Interface Schematic

Figure 4. LO Interface Schematic

Figure 5. IF Interface Schematic

Figure 6. RF Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

DOWNCONVERTER PERFORMANCE

IF = 100 MHz, Upper Sideband (Low-Side LO)

Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 8. Input IP3 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 9. Noise Figure vs. RF Frequency at Various Temperatures, LO = 13 dBm , Measurement Taken with an External LO Amplifier

Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Input P1 dB and Input IP2, Upper Sideband (Low-Side LO)

Figure 12. Input P1dB vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 13. Input IP2 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 14. Input P1dB vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 15. Input IP2 vs. RF Frequency at Various LO Power Levels,

$$
T_{A}=25^{\circ} \mathrm{C}
$$

IF = 100 MHz, Lower Sideband (High-Side LO)

Figure 16. Conversion Gain vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 17. Input IP3 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 18. Noise Figure vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$, Measurement Taken with an External LO Amplifier

Figure 19. Conversion Gain vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 20. Input IP3 vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Input P1dB and Input IP2, Lower Sideband (High-Side LO)

Figure 21. Input P1dB vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 22. Input IP2 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 23. Input P1dB vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 24. Input IP2 vs. RF Frequency at Various LO Power Levels,

$$
T_{A}=25^{\circ} \mathrm{C}
$$

Figure 25. Conversion Gain vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 26. Input IP3 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 27. Conversion Gain vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 28. Input IP3 vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Input P1 dB and Input IP2, Upper Sideband (Low-Side LO)

Figure 29. Input P1dB vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 30. Input IP2 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 31. Input P1dB vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 32. Input IP2 vs. RF Frequency at Various LO Power Levels,

$$
T_{A}=25^{\circ} \mathrm{C}
$$

IF $=4000 \mathrm{MHz}$, Lower Sideband (High-Side LO)

Figure 33. Conversion Gain vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 34. Input IP3 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 35. Conversion Gain vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 36. Input IP3 vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Input P1dB and Input IP2, Lower Sideband (High-Side LO)

Figure 37. Input P1dB vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 38. Input IP2 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 39. Input P1dB vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 40. Input IP2 vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

HMC553ACHIPS

UPCONVERTER PERFORMANCE

Input IF (IFIN) = 100 MHz, Upper Sideband (Low-Side LO)

Figure 41. Conversion Gain vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 42. Input IP3 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 43. Input P1dB vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 44. Conversion Gain vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 45. Input IP3 vs. RF Frequency at Various LO Power Levels,
$T_{A}=25^{\circ} \mathrm{C}$

Figure 46. Input P1dB vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

IFIN $=100$ MHz, Lower Sideband (High-Side LO)

Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 48. Input IP3 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 49. Input P1dB vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 50. Conversion Gain vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 51. Input IP3 vs. RF Frequency at Various LO Power Levels,
$T_{A}=25^{\circ} \mathrm{C}$

Figure 52. Input P1dB vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$
$I F_{I N}=4000$ MHz, Upper Sideband (Low-Side LO)

Figure 53. Conversion Gain vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 54. Input IP3 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 55. Input P1dB vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 56. Conversion Gain vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 57. Input IP3 vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 58. Input P1dB vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

IFIN $=4000$ MHz, Lower Sideband (High-Side LO)

Figure 59. Conversion Gain vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 60. Input IP3 vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 61. Input P1dB vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 62. Conversion Gain vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 63. Input IP3 vs. RF Frequency at Various LO Power Levels,
$T_{A}=25^{\circ} \mathrm{C}$

Figure 64. Input P1dB vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

ISOLATION AND RETURN LOSS

Downconverter Performance at IF = 100 MHz, Upper Sideband (Low-Side LO)

Figure 65. LO to RF Isolation vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 66. LO to IF Isolation vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 67. RF to IF Isolation vs. RF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 68. LO to RF Isolation vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 69. LO to IF Isolation vs. RF Frequency at Various LO Power Levels,
$T_{A}=25^{\circ} \mathrm{C}$

Figure 70. RF to IF Isolation vs. RF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 71. LO Return Loss vs. LO Frequency at Various Temperatures, $L O=11 \mathrm{dBm}, T_{A}=25^{\circ} \mathrm{C}$

Figure 72. RF Return Loss vs. RF Frequency at LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}, L O=10 \mathrm{GHz}$

Figure 73. IF Return Loss vs. IF Frequency at LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}, L O=10 \mathrm{GHz}$

IF BANDWIDTH

Downconverter, Upper Sideband, LO Frequency = 8 GHz

Figure 74. Conversion Gain vs. IF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 75. Input IP3 vs. IF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 76. Conversion Gain vs. IF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 77. Input IP3 vs. IF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Downconverter, Lower Sideband, LO Frequency = 13 GHz

Figure 78. Conversion Gain vs. IF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 79. Input IP3 vs. IF Frequency at Various Temperatures, $L O=13 \mathrm{dBm}$

Figure 80. Conversion Gain vs. IF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

Figure 81. Input IP3 vs. IF Frequency at Various LO Power Levels, $T_{A}=25^{\circ} \mathrm{C}$

SPURIOUS AND HARMONICS PERFORMANCE

 LO Harmonics$\mathrm{LO}=13 \mathrm{dBm}$, and all values in dBc are below the input LO level and measured at the RF port. N/A means not applicable.

Table 4. LO Harmonics at RF

LO Frequency (GHz)	NLo Spur at RF Port (dBc)			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
6	35	31	64	57
8	38	31	56	50
9	37	36	61	46
10	37	41	63	46
12	38	47	39	50
14	39	59	41	N/A

$\mathrm{LO}=13 \mathrm{dBm}$, and all values in dBc are below the input LO level and measured at the IF port. N/A means not applicable.

Table 5. LO Harmonics at IF

LO Frequency (GHz)	Noo Spur at IF Port (dBc)			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
6	30	49	50	68
8	32	45	47	71
9	33	49	46	62
10	33	50	42	63
12	34	57	33	61
14	36	54	33	N/A

$M \times N$ Spurious Outputs

Downconversion, Upper Sideband

Spur values are $(\mathrm{M} \times \mathrm{RF})-(\mathrm{N} \times \mathrm{LO}) . \mathrm{RF}=10.1 \mathrm{GHz}, \mathrm{LO}=$ 10 GHz , RF power $=-10 \mathrm{dBm}$, and LO power $=+13 \mathrm{dBm}$.
Mixer spurious products are measured in dBc from the IF output power level. N/A means not applicable.

								$\mathbf{N} \times \mathbf{\text { L O }}$					
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$							
$\mathbf{M} \times \mathbf{R F}$	$\mathbf{0}$	0	3	21	12	$\mathrm{~N} / \mathrm{A}$							
	$\mathbf{1}$	19	0	40	51	56							
	$\mathbf{2}$	63	68	57	74	77							
	$\mathbf{3}$	73	78	80	70	82							
	$\mathbf{4}$	N/A	73	76	81	>90							

Downconversion, Lower Sideband

Spur values are $(\mathrm{M} \times \mathrm{RF})-(\mathrm{N} \times \mathrm{LO}) . \mathrm{RF}=14 \mathrm{GHz}, \mathrm{LO}=$ 14.1 GHz, RF power $=-10 \mathrm{dBm}$, and LO power $=+13 \mathrm{dBm}$. Mixer spurious products are measured in dBc from the IF output power level. N/A means not applicable.

		$\mathbf{N} \times$ LO					
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{M} \times \mathbf{R F}$	$\mathbf{0}$	0	5	22	N/A	N/A	
	$\mathbf{1}$	13	0	34	61	N/A	
	$\mathbf{2}$	67	78	62	78	70	
	$\mathbf{3}$	N/A	71	80	73	79	
	$\mathbf{4}$	N/A	N/A	71	79	>90	

Upconversion, Upper Sideband
Spur values are $\left(\mathrm{M} \times \mathrm{IF}_{\text {IN }}\right)+(\mathrm{N} \times \mathrm{LO}) . \mathrm{IF}_{\text {IN }}=0.1 \mathrm{GHz}, \mathrm{LO}=$ $10 \mathrm{GHz}, \mathrm{IF}_{\text {IN }}$ power $=-10 \mathrm{dBm}$, and LO power $=+13 \mathrm{dBm}$. Mixer spurious products are measured in dBc from the RF output power level.

		$\mathrm{N} \times$ LO				
		0	1	2	3	4
	-5	>90	83	80	73	66
	-4	>90	83	79	74	67
	-3	>90	65	78	73	64
	-2	76	46	58	67	55
	-1	35	0	36	25	36
$\mathbf{M} \times \mathrm{IF}_{\text {IN }}$	0	0	6	11	34	15
	+1	36	0	37	26	36
	+2	76	48	58	71	55
	+3	>90	64	78	73	68
	+4	>90	83	77	75	67
	+5	>90	82	78	74	67

Upconversion, Lower Sideband
Spur values are $\left(\mathrm{M} \times \mathrm{IF}_{\text {IN }}\right)+(\mathrm{N} \times \mathrm{LO}) . \mathrm{IF}_{\text {IN }}=0.1 \mathrm{GHz}, \mathrm{LO}=$ 14.1 GHz, IF In power $=-10 \mathrm{dBm}$, and LO power $=+13 \mathrm{dBm}$. Mixer spurious products are measured in dBc from the RF output power level. N/A means not applicable.

		N \times LO				
		0	1	2	3	4
$\mathbf{M} \times \mathbf{I F}$ IN	-5	>90	81	73	65	N/A
	-4	>90	79	71	65	N/A
	-3	88	62	73	63	N/A
	-2	70	46	74	58	N/A
	-1	33	0	34	21	N/A
	0	0	7	28	10	N/A
	+1	33	0	34	20	N/A
	+2	73	49	72	57	N/A
	+3	87	63	73	64	N/A
	+4	>90	80	73	64	N/A
	+5	>90	79	74	63	N/A

THEORY OF OPERATION

The HMC553ACHIPS is a general-purpose, double balanced mixer that can be used as an upconverter or a downconverter from 6 GHz to 14 GHz .

When used a downconverter, the HMC553ACHIPS down converts RF between 6 GHz and 14 GHz to intermediate frequencies between dc and 5 GHz .

When used as an upconverter, the mixer up converts IF between dc and 5 GHz to RF between 6 GHz and 14 GHz .

APPLICATIONS INFORMATION TYPICAL APPLICATION CIRCUIT

Figure 82 shows the typical application circuit for the HMC553ACHIPS. The HMC553ACHIPS is a passive device and does not require any external components. The LO and RF pads are internally ac-coupled. The IF pad is internally dccoupled. When IF operation to dc is not required, use of an
external series capacitor is recommended of a value chosen to pass the necessary IF frequency range. When IF operation to dc is required, do not exceed the IF source and sink current rating specified in the Absolute Maximum Ratings section.

Figure 82. Typical Application Circuit

MOUNTING AND BONDING TECHNIQUES

Attach the die directly to the ground plane eutectically or with conductive epoxy. To bring RF to and from the chip, 50Ω microstrip transmission lines on $0.127 \mathrm{~mm}\left(0.005^{\prime \prime}\right)$ thick, alumina thin film substrates are recommended (see Figure 83). If using 0.254 mm (0.010 ") thick, alumina thin film substrates, raise the die $0.150 \mathrm{~mm}\left(0.006^{\prime \prime}\right)$ so that the surface of the die is coplanar with the surface of the substrate. A way to accomplish this is to attach the $0.102 \mathrm{~mm}(0.004$ ") thick die to a 0.150 mm (0.006 ") thick molybdenum heat spreader (moly tab) that is then attached to the ground plane (see Figure 84). Place microstrip substrates as close to the die as possible to minimize bond wire length. Typical die to substrate spacing is $0.076 \mathrm{~mm}(0.003$ ") .

Figure 83. Bonding RF Pads to 0.127 mm Substrate

Figure 84. Bonding RF Pads to 0.254 mm Substrate

HANDLING PRECAUTIONS

Follow the precautions in the Storage section, the Cleanliness section, the Static Sensitivity section, the Transients section, and the General Handling section to avoid permanent damage to the HMC553ACHIPS.

Storage

All bare dice are placed in either waffle-based or gel-based, ESD protective containers and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag is open, store all dies in a dry nitrogen environment.

Cleanliness

Handle the chips in a clean environment. Do not attempt to clean the chips using liquid cleaning systems.

Static Sensitivity

Follow ESD precautions to protect against ESD strikes.

Transients

Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pickup.

General Handling

Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and must not be touched with a vacuum collet, tweezers, or fingers.

MOUNTING

The chip is back metallized and can be die mounted either with gold (Au)/tin (Sn) eutectic preforms or with electrically conductive epoxy. The mounting surface must be clean and flat.

Eutectic Die Attach

An 80/20 gold and tin preform is recommended with a work surface temperature of $255^{\circ} \mathrm{C}$ and a tool temperature of $265^{\circ} \mathrm{C}$. When hot $90 / 10$ nitrogen (N)/hydrogen (H) gas is applied, the tool tip temperature must be $290^{\circ} \mathrm{C}$. Do not expose the chip to a temperature greater than $320^{\circ} \mathrm{C}$ for more than 20 seconds. No more than 3 seconds of scrubbing is required for attachment.

Epoxy Die Attach

Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip when the chip is placed into position. Cure epoxy per the schedule of the manufacturer.

WIRE BONDING

Ball or wedge bond with 0.025 mm (0.00098 ") diameter, pure gold wire is recommended. Thermosonic wire bonding with a nominal stage temperature of $150^{\circ} \mathrm{C}$, and either a ball bonding force of 40 grams to 50 grams or a wedge bonding force of 18 grams to 22 grams, is recommended. Use the minimum level of ultrasonic energy to achieve reliable wire bonds. Wire bonds must start on the chip and terminate on the package or substrate. All bonds must be as short as possible at $<0.31 \mathrm{~mm}(0.01220$ ").

ASSEMBLY DIAGRAM

The assembly diagram of the HMC553ACHIPS is shown in Figure 85.

Figure 85. Evaluation Printed Circuit Board Top Layer

OUTLINE DIMENSIONS

*This die utilizes fragile air bridges. Any pickup tools used must not contact this area.

09-20-2019-A

Figure 86. 7-Pad Bare Die [CHIP]
(C-7-12)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
HMC553AG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$7-$ Pad Bare Die [CHIP]	$\mathrm{C}-7-12$
HMC553AG-SX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	7-Pad Bare Die [CHIP]	$\mathrm{C}-7-12$

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Mixer category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
HMC337-SX HMC404-SX mamx-009646-23dbml HMC339-SX HMC8192-SX MIQ24MS-2 HMC220BMS8GETR M85C HMC554A-SX HMC8192LG HMC521A-SX HMC521ACHIPS CMD258C4 LT5511EFE MAMX-011023-SMB HMC399MS8TR HMC333TR HMC214MS8TR HMC175MS8TR MAMXSS0012TR-3000 109728-HMC129LC4 CSM1-13 SA612AD/01.112 HMC785LP4ETR LT5579IUH\#PBF HMC773ALC3BTR HMC558ALC3B HMC329ALC3B MY63H AD8343ARUZ-REEL7 AD608AR AD608ARZ AD831APZ AD831APZ-REEL7 AD8342ACPZ-REEL7 AD8343ARUZ AD8344ACPZ-REEL7 ADL5350ACPZ-R7 ADL5363ACPZ-R7 ADL5365ACPZ-R7 ADL5801ACPZ-R7 ADL5802ACPZ-R7 HMC1056LP4BE HMC1057-SX HMC1063LP3E HMC1093-SX HMC1106SX HMC129 HMC143 HMC400MS8ETR

[^0]: ${ }^{1}$ The HMC553AG and HMC553AG-SX are RoHS compliant parts.

