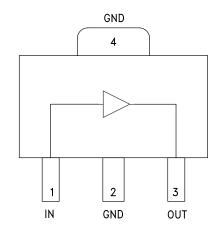


02 0617


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

Typical Applications

The HMC589AST89E is ideal for:

- Cellular / PCS / 3G
- Fixed Wireless & WLAN
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment
- IF & RF Applications

Functional Diagram

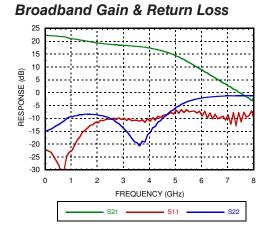
Features

P1dB Output Power: +21 dBm Gain: 21 dB Output IP3: +33 dBm Single Supply: +5V Industry Standard SOT89E Package

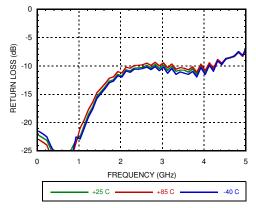
General Description

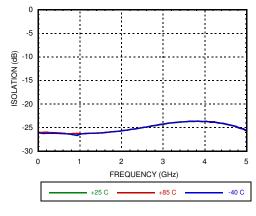
The HMC589AST89E is an InGaP HBT Gain Block MMIC SMT amplifier covering DC to 4 GHz and packaged in an industry standard SOT89E. The amplifier can be used as a cascadable 50 Ohm RF or IF gain stage as well as a LO or PA driver with up to +19 dBm P1dB output power for cellular/3G, FWA, CATV, microwave radio and test equipment applications. The HMC589AST89E offers 20 dB gain and +33 dBm output IP3 at 1 GHz while requiring only 82 mA from a single positive supply. The HMC589AST89E InGaP HBT gain block offers excellent output power and gain stability over temperature.

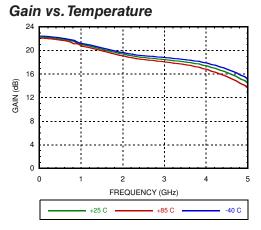
Electrical Specifications, Vs= 5V, Rbias= 1.8 Ohm, $T_A = +25^{\circ}$ C


Parameter			Тур.	Max.	Units
	DC - 1.0 GHz	19	21		dB
Cain	1.0 - 2.0 GHz	16	19		dB
Gain	2.0 - 3.0 GHz	14	17		dB
	3.0 - 4.0 GHz	13	16		dB
Gain Variation Over Temperature	DC - 5 GHz		0.008		dB/ °C
leave Detune Land	DC - 1.0 GHz		17		dB
Input Return Loss	1.0 - 4.0 GHz		10		dB
	DC - 1.0 GHz		12		dB
Output Return Loss	1.0 - 4.0 GHz		8		dB
Reverse Isolation	DC - 4 GHz		23		dB
	0.5 - 1.0 GHz	17.5	19		dBm
Output Dower for 1 dD Compression (D1dD)	1.0 - 2.0 GHz	16	19		dBm
Output Power for 1 dB Compression (P1dB)	2.0 - 3.0 GHz	16	19		dBm
	3.0 - 4.0 GHz	14.5	18		dBm
	0.5 - 1.0 GHz		33		dBm
Output Third Order Intercept (IP3)	1.0 - 2.0 GHz		32		dBm
(Pout= 0 dBm per tone, 1 MHz spacing)	2.0 - 3.0 GHz		31.5		dBm
	3.0 - 4.0 GHz		29		dBm
	DC - 2.0 GHz		4.0		dB
Noise Figure	2.0 - 4.0 GHz		4.5		dB
Supply Current (Icq)			82	102	mA

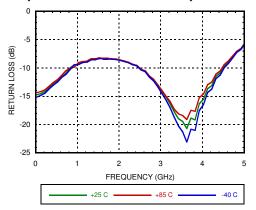
Note: Data taken with broadband bias tee on device output.

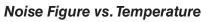

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

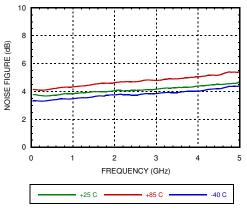

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz



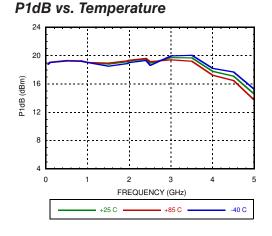
Input Return Loss vs. Temperature

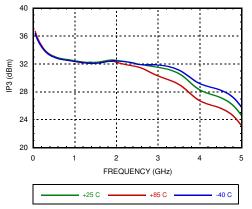


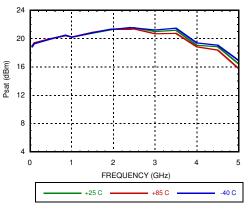

Reverse Isolation vs. Temperature

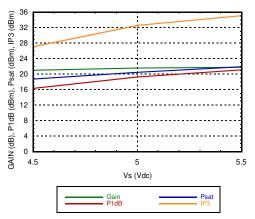


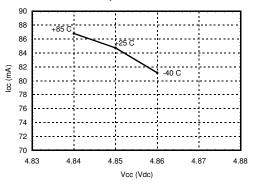
Output Return Loss vs. Temperature




AMPLIFIERS & GAIN BLOCK - SMT


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

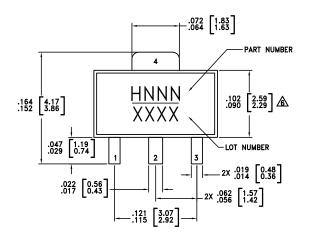

Output IP3 vs. Temperature

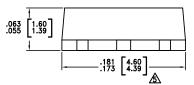

Psat vs. Temperature

Gain, Power & OIP3 vs. Supply Voltage @ 850 MHz, Rbias = 1.8 Ohms

Vcc vs. Icc Over Temperature for Fixed Vs= 5V, RBIAS= 1.8 Ohms

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz


Absolute Maximum Ratings


Collector Bias Voltage (Vcc)	+5.5 Vdc
RF Input Power (RFIN)(Vcc = +5 Vdc)	+10 dBm up to 1 GHz +8 dBm from 1-4 GHz
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 7.84 mW/°C above 85 °C)	0.51 W
Thermal Resistance (junction to ground paddle)	127.6 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 2



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

1. PACKAGE BODY MATERIAL:

MOLDING COMPOUND MP-180S OR EQUIVALENT.

2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.

3. LEAD PLATING: 100% MATTE TIN.

4. DIMENSIONS ARE IN INCHES [MILLIMETERS]

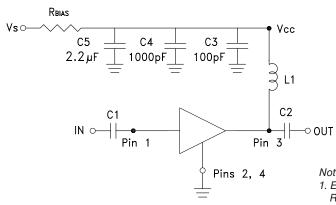
DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC589AST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[1]	<u>H589A</u> XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX



InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	IN	This pin is DC coupled. An off chip DC blocking capacitor is required.	
3	OUT	RF output and DC Bias (Vcc) for the output stage.	
2, 4	GND	These pins and package bottom must be connected to RF/DC ground.	

Application Circuit

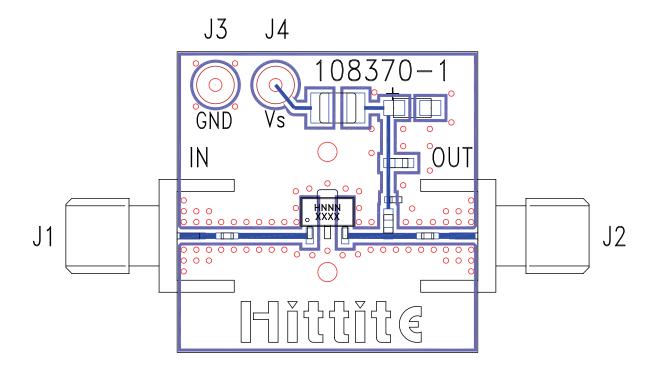
Note:

1. External blocking capacitors are required on RFIN and RFOUT.

2. RBIAS provides DC bias stability over temperature.

Recommended Bias Resistor Values for Icc = 88 mA, Rbias = (Vs - Vcc) / Icc

Supply Voltage (Vs)	5V	6V	8V
RBIAS VALUE	1.8 Ω	13 Ω	38 Ω
RBIAS POWER RATING	1/8 W	1⁄4 W	1⁄2 W


Recommended Component Values for Key Application Frequencies

Component	Frequency (MHz)						
	50	900	1900	2200	2400	3500	4000
L1	270 nH	56 nH	24 nH	24 nH	15 nH	8.2 nH	8.2 nH
C1, C2	0.01 µF	100 pF					

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

Evaluation PCB^[3]

List of Materials for Evaluation PCB EV1HMC589AST89 ^[1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J4	DC Pin
C1, C2	Capacitor, 0402 Pkg.
C3	100 pF Capacitor, 0402 Pkg.
C4	1000 pF Capacitor, 0603 Pkg.
C5	2.2 µF Capacitor, Tantalum
R1	Resistor, 1206 Pkg.
L1	Inductor, 0603 Pkg.
U1	HMC589AST89 / HMC589AST89E
PCB [2]	108370 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

 $\left[3\right]$ Evaluation board tuned for 1.9 GHz, 1/8W operation

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Device upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 A81-2 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC576-SX HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5879LS7TR HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V A4011