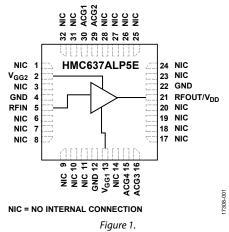


GaAs, pHEMT, MMIC, 1 W Power Amplifier, 0.1 GHz to 6 GHz

Data Sheet

FEATURES


P1dB output power: 29 dBm Gain: 13 dB Output IP3: 44 dBm 50 Ω matched input/output 32-lead, 5 mm × 5 mm LFCSP package: 25 mm²

APPLICATIONS

Telecom infrastructure Microwave radio Very small aperture terminal (VSAT) Military and space Test instrumentation Fiber optics

HMC637ALP5E

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The HMC637ALP5E is a gallium arsenide (GaAs), monolithic microwave integrated circuit (MMIC), pseudomorphic high electron mobility transistor (pHEMT) distributed power amplifier which operates between 0.1 GHz and 6 GHz. The amplifier provides 13 dB of gain, 44 dBm output third-order intercept (IP3), and 29 dBm of output power at 1 dB gain compression while requiring 400 mA from a 12 V supply. Gain

flatness is ±0.75 dB from 100 MHz to 6 GHz making the HMC637ALP5E ideal for electronic warfare (EW), electronic counter-measure (ECM), radar and test equipment applications. The HMC637ALP5E amplifier radio frequency (RF) I/Os are internally matched to 50 Ω , and the 5 mm × 5 mm lead frame chip scale package (LFCSP) is compatible with high volume surface-mount technology (SMT) assembly equipment.

Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagram	. 1
General Description	. 1
Revision History	. 2
Specifications	. 3
Electrical Specifications	. 3
Absolute Maximum Ratings	. 4
Thermal Resistance	. 4

REVISION HISTORY

This Hittite Microwave Products data sheet has been reformatted
to meet the styles and standards of Analog Devices, Inc.
4/2019—v02.0418 to Rev. C
Updated FormatUniversal
Changed HMC637ALP5 to HMC637ALP5E Throughout
Changes to Product Title, Features Section, Applications
Section, General Description Section, and Figure 1 1
Changes to Electrical Specifications Section and Table 1
Changes to Table 2 4
Added Thermal Resistance Section 4

ESD Caution	4
Pin Configuration and Function Descriptions	5
Interface Schematics	6
Typical Performance Characteristics	7
Applications Information	9
Evaluation PCB	
List of Materials for PCB EV1HMC637ALP5E	
Outline Dimensions	11
Ordering Guide	11

Added Table 3; Renumbered Sequentially4
Added Figure 2; Renumbered Sequentially5
Changes to Table 45
Changes to Figure 10 Caption through Figure 14 Caption7
Changes to Figure 15 Caption, Figure 16 Caption, Figure 18
Caption, and Figure 20 Caption
Changes to Application Information Section and Figure 219
Changes to Application Information Section and Figure 219 Changes to List of Materials for PCB EV1HMC637ALP5E
e 11 e

SPECIFICATIONS ELECTRICAL SPECIFICATIONS

 $T_A = 25^{\circ}$ C, drain bias voltage (V_{DD}) = 12 V, gate bias voltage (V_{GG2}) = 5 V, supply current (I_{DD}) = 400 mA (adjust V_{GG1} between -2 V to 0 V to achieve I_{DD} = 400 mA typical), 50 Ω system, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Units
FREQUENCY RANGE			0.1		6	GHz
GAIN			12	13		dB
Gain Flatness				±0.75		dB
Gain Variation Over Temperature				0.015		dB/°C
RETURN LOSS						
Input				12		dB
Output				15		dB
OUTPUT						
Output Power for 1 dB Compression	P1dB		27	29		dBm
Saturated Output Power	P _{SAT}			31		dBm
Output Third-Order Intercept	OIP3	Pout per tone = 10 dBm, 1 MHz spacing		44		dBm
NOISE FIGURE				12		dB
		2.0 GHz to 6.0 GHz		5		dB
SUPPLY CURRENT	IDD		320	400	480	mA
Drain Bias Voltage ¹	V _{DD}	$I_{DD} = 400 \text{ mA}$		11.5		V
				12.0		V
				12.5		V

 1 V_{GG1} set initially for nominal bias condition of V_{DD} = 12 V and V_{GG2} = 5 V to achieve I_{DD} = 400 mA typical; then adjusting V_{DD} ±0.5 V from 12 V to measure I_{DD} variation.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Drain Bias Voltage (V _{DD})	14 V _{DC}
Gate Bias Voltage	
V _{GG1}	$-3 V_{DC}$ to $0 V_{DC}$
V _{GG2}	4 V _{DC} to 7 V _{DC}
RF Input Power (RFIN), $V_{DD} = 12 V_{DC}$	25 dBm
Channel Temperature	175°C
Continuous P _{DISS} (T = 85°C, Derate 95 mW/°C Above 85°C)	8.6 W
Maximum Peak Reflow Temperature	260°C (MSL3 ¹ Rating)
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +85°C
Electrostatic Discharge (ESD) Sensitivity	
Human Body Model (HBM)	Class 1B

¹ MSL3 stands for Moisture Sensitivity Level 3.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

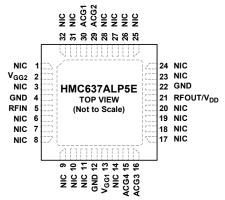
THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JC} is the junction to case thermal resistance.

Table 3. Thermal Resistance

Package Type	θ _{JC} 1	Unit
HCP-32-1	10.5	°C/W


¹ Thermal impedance simulated values are based on a JEDEC 1S0P thermal test board. See JEDEC JESD51.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES 1. NIC = NO INTERNAL CONNECTION. THESE PINS MAY BE CONNECTED TO

RF GROUND. PERFORMANCE IS NOT AFFECTED. 2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO RF/DC GROUND.

02

Figure 2. Pin Configuration

Pin No.	Mnemonic	Description ¹
1, 3, 6 to 11, 14, 17 to 20, 23 to 28, 31, 32	NIC	No Internal Connection. These pins may be connected to RF ground. Performance is not affected.
2	V_{GG2}	Gate Control 2 for Amplifier. Apply 5 V to V_{GG2} for nominal operation. Attach a bypass capacitor per the application circuit shown in the Applications Information section.
4, 12, 22	GND	Ground. Connect Pin 4, Pin 12, and Pin 22 to RF/dc ground.
5	RFIN	This pad is dc-coupled and matched to 50 Ω .
13	V _{GG1}	Gate Control 1 for Amplifier. Attach a bypass capacitor per the application circuit shown in the Applications Information section. Follow the power up and power down sequences outlines in the Applications Information section.
15	ACG4	Low Frequency Termination. Attach a bypass capacitor per the application circuit shown in the Applications Information section.
16	ACG3	Low Frequency Termination. Attach a bypass capacitor per the application circuit shown in the Applications Information section.
21	RFOUT/V _{DD}	RF Output/Power Supply Voltage for Amplifier. Connect the dc bias (V_{DD}) network to provide drain current (I_{DD}). See the application circuit shown in the Applications Information section.
29	ACG2	Low Frequency Termination. Attach a bypass capacitor per the application circuit shown in the Applications Information section.
30	ACG1	Low Frequency Termination. Attach a bypass capacitor per the application circuit shown in the Applications Information section.
	EPAD	Exposed Pad. The exposed pad must be connected to RF/dc ground.

¹ See the Interface Schematics section for pin interfaces.

HMC637ALP5E

INTERFACE SCHEMATICS

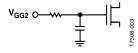


Figure 3. V_{GG2} Interface Schematic

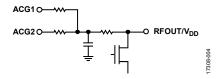


Figure 4. ACG1, ACG2, and RFOUT/V_{DD} Interface Schematic

Figure 5. RFIN Interface Schematic

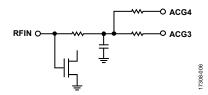
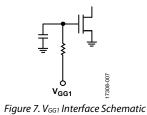
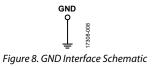
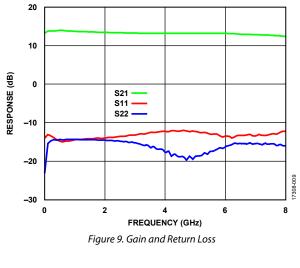





Figure 6. RFIN, ACG4, and ACG3 Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

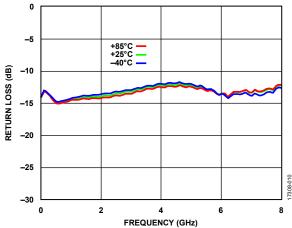


Figure 10. Input Return Loss vs. Frequency at Various Temperatures

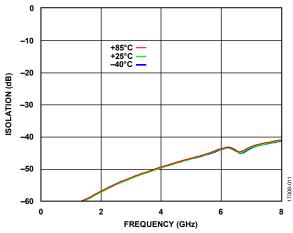
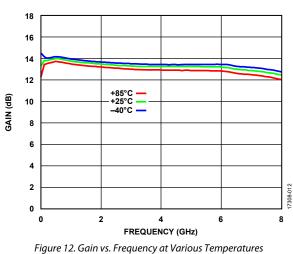



Figure 11. Reverse Isolation vs. Frequency at Various Temperatures

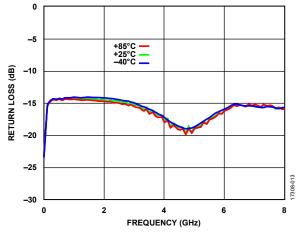


Figure 13. Output Return Loss vs. Frequency at Various Temperatures

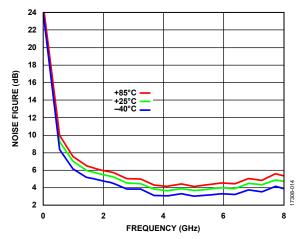
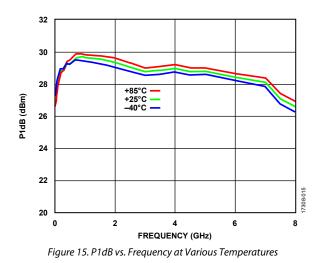



Figure 14. Noise Figure vs. Frequency at Various Temperatures

HMC637ALP5E

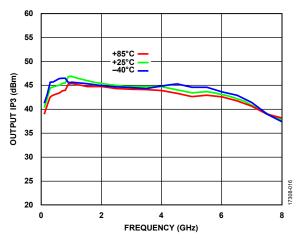


Figure 16. Output IP3 vs. Frequency at Various Temperatures

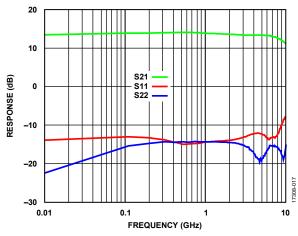
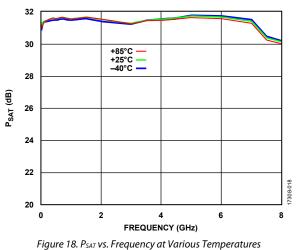
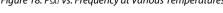
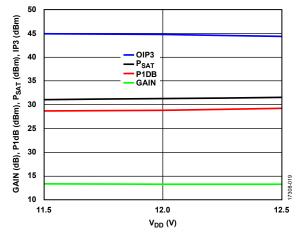
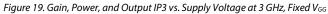






Figure 17. Gain and Return Loss vs. Frequency, Log Scale

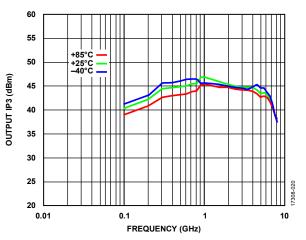
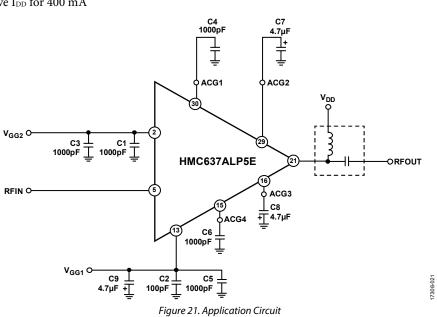


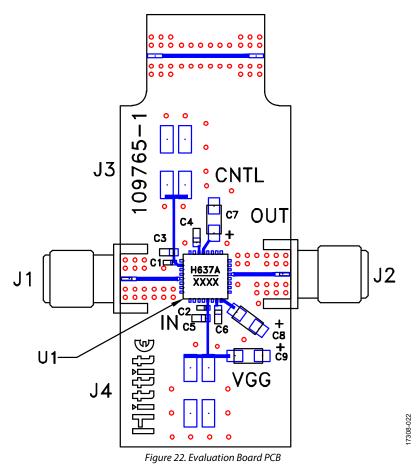
Figure 20. Output IP3 vs. Frequency at Various Temperatures, Log Scale

APPLICATIONS INFORMATION


For the application circuit shown in Figure 21, V_{DD} must be applied through a broadband bias tee or external bias network.

The power-up bias sequence is as follows:

- 1. Set V_{GG1} to -2 V
- 2. Set V_{DD} to 12 V
- 3. Set V_{GG2} to 5 V
- 4. Adjust V_{GG1} to achieve I_{DD} for 400 mA


The power-down sequence is as follows:

- 1. Remove V_{GG2} bias
- 2. Remove V_{DD} bias
- 3. Remove V_{GG1} bias

HMC637ALP5E

EVALUATION PCB

LIST OF MATERIALS FOR PCB EV1HMC637ALP5E

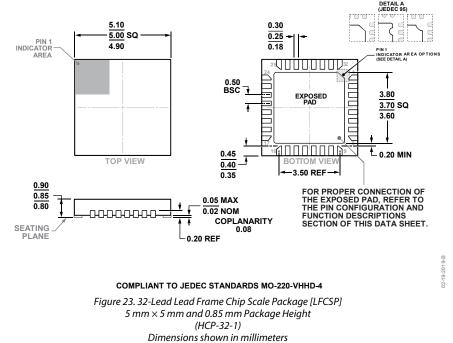

It is recommended that the circuit board used in the application follows proper RF circuit design techniques. Signal lines must have 50 Ω impedance while the package ground leads and package bottom are connected directly to the ground plane similar to that shown in Figure 22. Ensure that a sufficient number of via holes are used to connect the top and bottom ground planes. The evaluation board thermal design must also be considered and mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices, Inc. upon request.

Table 5. Bill of Materials for Evaluation PCB EV1HMC637ALP5E

2 • • • • • • • • • • • • • • • • • • •				
ltem	Description			
J1, J2	SRI SMA connector			
J3, J4	2 mm Molex header			
C1, C2	100 pF capacitor, 0402 package			
C3 to C6	1000 pF capacitor, 0603 package			
C7 to C9	4.7 μF capacitor, tantalum			
U1	HMC637ALP5E			
PCB ¹	109765 evaluation PCB			

¹ Circuit board material: Rogers 4350.

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	MSL Rating ²	Package Description	Package Option
HMC637ALP5E	-40°C to +85°C	MSL3	32-Lead Lead Frame Chip Scale Package [LFCSP]	HCP-32-1
HMC637ALP5ETR	-40°C to +85°C	MSL3	32-Lead Lead Frame Chip Scale Package [LFCSP]	HCP-32-1
EV1HMC637ALP5			Evaluation Board	

¹ All devices are RoHS compliant.

² See the Absolute Maximum Ratings section.

©2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D17308-0-4/19(C)

Rev. C | Page 11 of 11

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 A81-2 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC576-SX HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V